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a b s t r a c t

In this paper, a new numerical method for solving nonlinear fractional integro-differential equations is
presented. The method is based upon hybrid functions approximation. The properties of hybrid
functions consisting of block-pulse functions and Bernoulli polynomials are presented. The Riemann–
Liouville fractional integral operator for hybrid functions is given. This operator is then utilized to reduce
the solution of the nonlinear fractional integro-differential equations to a system of algebraic equations.
Illustrative examples are included to demonstrate the validity and applicability of the technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional differential equations (FDEs) and fractional integro-
differential equations (FIDEs) have drawn increasing attention and
interest due to their important applications in science and engi-
neering (see for example [1–3]).

Many mathematical modelings of various physical phenomena
contain non-linear fractional-order Volterra integro-differential
equations, such as heat conduction in materials with memory
[4]. Moreover, these kinds of equations always arise in fluid
dynamics, biological models and chemical kinetics [5,6]. Generally
speaking, the analytical solutions of most FIDEs are not easy to
obtain. Therefore, seeking numerical solutions of these equations
becomes more and more important [7]. Recently, several numer-
ical methods to solve FIDEs have been given, such as the varia-
tional iteration method [8,9], homotopy perturbation method
[10–12], Adomian's decomposition method [13], homotopy analy-
sis method [14] and collocation method [15,16].

The available sets of orthogonal functions can be divided into
three classes. The first class includes sets of piecewise constant basis
functions (e.g., block-pulse, Haar, and Walsh). The second class
consists of sets of orthogonal polynomials (e.g., Chebyshev, Laguerre,
and Legendre). The third class is the set of sine–cosine functions in
the Fourier series. Orthogonal functions have been used when

dealing with various problems of the dynamical systems. The main
advantage of using orthogonal functions is that they reduce the
dynamical system problems to those of solving a system of algebraic
equations by using the operational matrices of differentiation or
integration. These matrices can be uniquely determined based on the
particular orthogonal functions. Special attention has been given to
applications of the Walsh functions, rational Legendre functions,
rationalized Haar functions, Legendre wavelets and semi-orthogonal
wavelets [17–22]. The Bernoulli polynomials and Taylor series are not
based on orthogonal functions. Nevertheless, they possess the
operational matrix of integration.

In recent years, the hybrid functions consisting of the combina-
tion of block-pulse functions with Legendre polynomials, Cheby-
shev polynomials, Taylor series, Lagrange polynomials or Bernoulli
polynomials [23–32] have been shown to be a mathematical
power tool for discretization of selected problems. Among these
hybrid functions, the hybrid functions of block-pulse and Bernoulli
polynomials have been shown to be computationally more effec-
tive [31–33]. To the best of our knowledge, none of these hybrid
functions have been applied for problems with fractional order
differential equations. Furthermore, for solving fractional order
differential equations by cosine and sine (CAS), Chebyshev, Haar,
or Legendre wavelets, the operational matrices for fractional order
(OMFFO) of these wavelets are calculated in [34–37], respectively.
For obtaining the OMFFO, these wavelets were first expanded
into block-pulse functions, then OMFFO of block-pulse functions
was used for calculating OMFFO for CAS, Chebyshev, Haar and
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Legendre wavelets in [34–37], respectively. It is noted that none of
these wavelets calculated OMFFO directly.

In the present paper, a new numerical method for solving the
system of fractional integro-differential equations of the following
form is presented:

F1ðt; f ðtÞ;Dq0 f ðtÞ;Dq1 f ðtÞ;…;Dqr f ðtÞÞ ¼ λF2ðt; f ðtÞ;
Z t

0
κðt; sÞGðs; f ðsÞÞ dsÞ;

ð1Þ
with initial conditions

f ðkÞð0Þ ¼ dk; k¼ 0;1;…;m0�1; ð2Þ
where q0Zq1Z⋯ZqrZ0; mk�1oqkrmk; 0rtr1 and λAR.

The method is based upon hybrid functions approximation.
These hybrid functions, which consist of the hybrid of block-pulse
functions and Bernoulli polynomials, are given. We then obtain the
Riemann–Liouville fractional integral operator for the hybrid of
block-pulse functions and Bernoulli polynomials. This operator is
then utilized to reduce the solution of Eq. (1) with initial condi-
tions in Eq. (2) to the solution of algebraic equations.

The outline of this paper is as follows: In Section 2, we introduce
some necessary definitions and mathematical preliminaries of frac-
tional calculus. In Section 3, we describe some properties of the hybrid
of block-pulse functions and Bernoulli polynomials required for our
subsequent development. In Section 4, we derive the Riemann–
Liouville fractional integral operator for the hybrid of block-pulse
functions and Bernoulli polynomials. Section 5 is devoted to the
numerical method for solving Eq. (1) with initial conditions in
Eq. (2). In Section 6, we report our numerical findings and demon-
strate the accuracy of the proposed numerical scheme by considering
nine numerical examples.

2. Preliminaries and notations

2.1. The fractional derivative and integral

There are various definitions of fractional derivative and integra-
tion. The widely used definition of a fractional derivative is the Caputo
definition, and a fractional integration is the Riemann–Liouville
definition.

Definition 1. Caputo's fractional derivative of order q is defined as
[38]

ðDqf ÞðtÞ ¼ 1
Γðn�qÞ

Z t

0

f ðnÞðsÞ
ðt�sÞqþ1�n ds; n�1oqrn; nAN;

where q40 is the order of the derivative and n is the smallest
integer greater than q.

Definition 2. The Riemann–Liouville fractional integral operator
of order q is defined as [38]

Iqf ðtÞ ¼
1

ΓðqÞ
R t
0

f ðsÞ
ðt�sÞ1�q ds¼ 1

ΓðqÞ t
q�1nf ðtÞ; q40;

f ðtÞ; q¼ 0;

8><
>: ð3Þ

where tq�1nf ðtÞ is the convolution product of tq�1 and f(t).

The Caputo derivative and Riemann–Liouville integral satisfy
the following properties [39]:

IαðDαhðtÞÞ ¼ hðtÞ�
Xn�1

k ¼ 0

hkð0Þt
k

k!
; ð4Þ

if αAR; n�1oαrn, nAN, then

DαðhðtÞÞ ¼ In�αDnhðtÞ: ð5Þ

3. Hybrid of block-pulse functions and Bernoulli polynomials

Hybrid functions bnmðtÞ; n¼ 1;2;…;N; m¼ 0;1;…;M, are def-
ined on the interval ½0; tf Þ as [33]

bnmðtÞ ¼
βm

N
tf
t�nþ1

� �
; tA

n�1
N

tf ;
n
N
tf

� �
;

0 otherwise;

8><
>: ð6Þ

where n and m are the order of block-pulse functions and
Bernoulli polynomials, respectively. In Eq. (6), βmðtÞ; m¼ 0;1;
2;…, are the Bernoulli polynomials of order m, which can be
defined by [40]

βmðtÞ ¼
Xm
k ¼ 0

m

k

� �
αm�kt

k; ð7Þ

where αk; k¼ 0;1;…;m, are Bernoulli numbers [33]. These poly-
nomials satisfy the following formula [41]:

βmð1�xÞ ¼ ð�1ÞmβmðxÞ: ð8Þ

3.1. Function approximation

If f AL2½0;1� and the best approximation of f by using the hybrid
of block-pulse functions and Bernoulli polynomials is PN

Mf , then
[33]

f CPN
Mf ¼

XM
m ¼ 0

XN
n ¼ 1

cnmbnmðtÞ ¼ CTBðtÞ; ð9Þ

where

CT ¼ ½c10; c20;…; cN0; c11; c21;…; cN1;…; c1M ; c2M ;…; cNM �; ð10Þ
and

BT ðtÞ ¼ ½b10ðtÞ;b20ðtÞ;…; bN0ðtÞ; b11ðtÞ; b21ðtÞ;…; bN1ðtÞ;…;b1MðtÞ; b2MðtÞ;…; bNMðtÞ�:
ð11Þ

4. Riemann–Liouville fractional integral operator for hybrid of
block-pulse functions and Bernoulli polynomials

We now derive the operator Iα for B(t) in Eq. (11) given by

IαBðtÞ ¼ Bðt;αÞ; ð12Þ
where

Bðt;αÞ ¼ ½Iαb10ðtÞ;…; IαbN0ðtÞ; Iαb11ðtÞ;…; IαbN1ðtÞ;…; Iαb1MðtÞ; Iαb2MðtÞ;…; IαbNMðtÞ�T :
ð13Þ

To obtain IαbnmðtÞ, we use the Laplace transform. By using Eq. (6),
we have

bnmðtÞ ¼ μðn�1Þ=NðtÞβmðNt�nþ1Þ�μn=NðtÞβmðNt�nþ1Þ; ð14Þ

where μcðtÞ is unit step function defined as

μcðtÞ ¼
1; tZc;
0; toc:

(

By taking the Laplace transform from Eq. (14) and using Eq. (8), we
get

L½bnmðtÞ� ¼ e�ððn�1Þ=NÞsL βm N tþn�1
N

� �
�nþ1

� �� �

�e�ðn=NÞsL βm N tþ n
N

� �
�nþ1

� �h i
;

¼ e�ððn�1Þ=NÞsL½βmðNtÞ��ð�1Þme�ðn=NÞsL½βmð�NtÞ�:
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