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a b s t r a c t

In this paper, a classical type of two-dimensional time-fractional telegraph equation defined by Caputo
sense for ð1oαo2Þ is analyzed by an approach based on the Galerkin weak form and moving least
squares (MLS) approximation subject to given appropriate initial and Dirichlet boundary conditions.
In the proposed method, which is a kind of the Meshless local Petrov–Galerkin (MLPG) method,
meshless Galerkin weak form is applied to the interior nodes while the meshless collocation method is
used for the nodes on the boundary, so the Dirichlet boundary condition is imposed directly. In MLPG
method, it does not require any background integration cells so that all integrations are carried out
locally over small quadrature domains of regular shapes, such as circles or squares. The moving least
squares approximation is proposed to construct shape functions. Two numerical examples are presented
and satisfactory agreements are achieved.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The fractional derivative and fractional differential equations
have been implemented to describe some phenomena in physics
and engineering, such as boundary layer effects in ducts, allometric
scaling laws in biology and ecology, colored noise, dielectric polar-
ization, electromagnetic waves, electrode–electrolyte polarization,
fractional kinetics, quantitative finance, quantum evolution of
complex systems, power-law phenomenon in fluid and complex
network, and viscoelastic mechanics [33,36]. Furthermore, the
fractional telegraph equation (typical fractional diffusion-wave
equation) has been applied into signal analysis for transmission,
the modeling of the reaction diffusion, propagation of electrical
signals and the random walk of suspension flows, etc. [12,32].

The classical telegraph equation is the outcome of the varia-
tional connection between the voltage wave and the current wave
on the well-proportioned transmission line (therefore it is also
called the transmission line equation). However, the classical
telegraph equation could not well represent the abnormal diffu-
sion phenomena during the finite long transmits progress, where
the voltage wave or the current wave possibly exists [2,42–44]. So,
it is necessary to study the fractional telegraph equation, including
the time and (or) space fractional derivatives. The present paper
considers the following time-fractional telegraph equation of

order ð1oαo2Þ:
∂αuðx; tÞ

∂tα
þγ1

∂α�1uðx; tÞ
∂tα�1 þγ2uðx; tÞ ¼ γ3Δuþ f ðx; tÞ; xAΩ; tA ½0; T �;

ð1Þ
subject to compatible initial conditions

uðx;0Þ ¼φðxÞ; ∂u
∂t
ðx;0Þ ¼ψ ðxÞ; xAΩ; ð2Þ

and the boundary conditions

uðx; tÞ ¼ g0ðy; tÞ for x¼ �1; uðx; tÞ ¼ g1ðy; tÞ for x¼ 1; xAΩ; tA ½0; T �;
ð3Þ

uðx; tÞ ¼ h0ðx; tÞ for y¼ �1; uðx; tÞ ¼ h1ðx; tÞ for y¼ 1; xAΩ; tA ½0; T �;
ð4Þ

where x¼ ðx; yÞ is the spatial variable,Ω¼ ½�1;1�2 ¼ ðx; yÞ : �1rx;
�

yr1g and, γ1, γ2 and γ3 are constants. Also, f ðx; tÞ is the source
function with sufficient smoothness and φðxÞ, ψ ðxÞ, g0ðy; tÞ, g1ðy; tÞ,
h0ðx; tÞ and h1ðx; tÞ are given continuous functions. Moreover, in Eq. (1),
the time-fractional derivatives are in the sense of Caputo which is
defined by

Dα
t FðtÞ ¼

1
Γðk�αÞ

R t
0 ðt�ξÞk�α�1F ðkÞðξÞ dξ; k�1oαok; t40;

F ðkÞðtÞ; α¼ k:

8><
>:

ð5Þ
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There are three classes of meshless methods: meshless meth-
ods based on weak forms such as the element free Galerkin (EFG)
method [7,8,38], meshless methods based on collocation techni-
ques (strong forms) such as the meshless collocation method
based on radial basis functions (RBFs) [27,21,16,1] and meshless
methods based on the combination of weak forms and collocation
technique. Due to the ill-conditioning of the resultant linear
systems in RBF-collocation method, various approaches are pro-
posed to evade this problem, Refs. [22–25] being among them.

In the literature, several meshless weak form methods have
been reported such as diffuse element method (DEM) [35], smooth
particle hydrodynamic (SPH) [9,10], the reproducing kernel parti-
cle method (RKPM) [30], boundary node method (BNM) [34],
partition of unity finite element method (PUFEM) [31], finite
sphere method (FSM) [11], boundary point interpolation method
(BPIM) [18] and boundary radial point interpolation method
(BRPIM) [19,39,41]. Liu applied the concept of MLPG and devel-
oped meshless local radial point interpolation (MLRPI) method
[28,26,13]. The weak forms are used to derive a set of algebraic
equations through a numerical integration process using a set of
quadrature domain that may be constructed globally or locally in
the domain of the problem. In the global weak form methods,
global background cells are needed for numerical integration in
computing the algebraic equations. To avoid the use of global
background cells, a so-called local weak form is adopted to
develop the meshless local Petrov–Galerkin (MLPG) method
[3–6,14,15,17,40,37]. When a local weak form is used for a field
node, the numerical integrations are carried out over a local
quadrature domain defined for the node, which also be the local
domain where the test (weight) function is defined. The local
domain usually has a regular and simple shape for an internal node
(such as sphere and square), and the integration is done numeri-
cally within the local domain. Hence the domain and boundary
integrals in the weak formmethods can easily be evaluated over the
regularly shaped sub-domains and their boundaries.

In this paper, we focus on the numerical solution of Eqs. (1)–(4)
using a kind of MLPG method which is based on the Galerkin weak
form and moving least squares (MLS) approximation. Two illus-
trative examples are given so that the convergence occurs with
respect to both time discretization and total number of nodes
covering spatial domain.

2. The MLS approximation scheme

A meshless method uses a local interpolation or approximation
to represent the trial function with the values of the unknown
variable at some nodal points. In the current work, the moving
least squares (MLS) approximation is used. Consider a sub-domain
Ωs, the neighborhood of a point x and denoted as the domain of
definition (or support) of the MLS approximation for the trial
function at x, which is located in the problem domain Ω (see
Fig. 1). To approximate the distribution of function u in Ωs, over a
number of randomly located nodes xi; i¼ 1;2;…n; the moving
least squares approximant uhðxÞ of u; 8xAΩs, can be defined by

uhðxÞ ¼ pT ðxÞaðxÞ 8xAΩs; ð6Þ
where pT ðxÞ ¼ ½p1ðxÞ; p2ðxÞ;…; pmðxÞ� is a complete monomial
basis of order m, and aðxÞ is a vector containing coefficients
ajðxÞ; j¼ 1;2;…m, which are functions of the space coordinates
x. pjðxÞ is monomial in the space coordinate xT ¼ ½x; y�, and m is the
number of polynomial basis functions. The pjðxÞ is built using
Pascal's triangle and a complete basis is usually preferred. The
linear basis functions are given by

PT ðxÞ ¼ 1; x; y
� �

; m¼ 3; ð7Þ

and the quadratic basis functions are

PT ðxÞ ¼ 1; x; y; x2; y2; xy
� �

; m¼ 6: ð8Þ

The coefficient vector aðxÞ is determined by minimizing a weighted
discrete L2 norm, defined as

JðxÞ ¼
Xn
i ¼ 1

wiðxÞ½pT ðxiÞaðxÞ� ûi�2

¼ ½P:aðxÞ� û�T :W :½P:aðxÞ� û�; ð9Þ

wherewiðxÞ is the weight function associated with the node i, with
wiðxÞ40 for all x in the support of wiðxÞ, xi denotes the value of x
at node i, n is the number of nodes in Ωs for which the weight
functions wiðxÞ40, the matrices P and W are defined as

P¼

pT ðx1Þ
pT ðx2Þ

⋮
pT ðxnÞ

0
BBBB@

1
CCCCA

n�m

; W¼
w1ðxÞ … 0
⋮ … ⋮
0 … wnðxÞ

0
B@

1
CA

and ûT ¼ ½û1; û2;…; ûn�: Here it should be noted that
ûi; i¼ 1;2;…;n, in Eq. (9) are the fictitious nodal values, and not
the nodal values of the unknown trial function uhðxÞ in general.
The stationarity of J in Eq. (9) with respect to aðxÞ leads to the
following linear relation between aðxÞ and û:

AðxÞaðxÞ ¼ BðxÞû; ð10Þ

where the matrices AðxÞ and BðxÞ are defined by

AðxÞ ¼ PTWP¼ BðxÞP¼
Xn
i ¼ 1

wiðxÞpðxiÞpT ðxiÞ; ð11Þ

BðxÞ ¼ PTW¼ ½w1ðxÞpðx1Þ;w2ðxÞpðx2Þ;…;wnðxÞpðxnÞ�: ð12Þ

The MLS approximation is well defined only when the matrix A in
Eq. (10) is non-singular. It can be seen that this is the case if and
only if the rank of P equals m. A necessary condition for a well-
defined MLS approximation is that at least m weight functions are
non-zero (i.e. n4m) for each sample point xAΩ and that the
nodes in Ωs will not be arranged in a special pattern such as on a
straight line. Here a sample point may be a nodal point under
consideration or a quadrature point.

Solving for aðxÞ from Eq. (10) and substituting it into Eq. (6)
give a relation which may be written as the form of an interpola-
tion function similar to that used in FEM, as

uhðxÞ ¼ΦT ðxÞ:û ¼
Xn
i ¼ 1

ϕiðxÞûi; xAΩs; ð13Þ

where uhðxiÞ � ui is not essentially equal to ûi and

ΦT ðxÞ ¼ pT ðxÞA�1ðxÞBðxÞ ð14Þ

Fig. 1. Node I is an interior node. Ωs and ΩQ are local support and local quadrature
domains, respectively.
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