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a b s t r a c t

This paper presents a novel explicit meshless solver for incompressible flows using the multidimensional
characteristic relations of artificial compressibility equations. The main objective of this research is using
the recently introduced multi-dimensional characteristic based (MCB) scheme in order to prevent the
instabilities and comparing it with the results obtained by the one dimensional characteristic based (CB)
method. An explicit four-stage Runge–Kutta scheme was used for meshless calculations and local time
stepping and residual smoothing are used to accelerate convergence. The MCB and CB meshless methods
are used for solving two incompressible flows including flow in a lid-driven cavity and the steady and
unsteady flows past a circular cylinder. The results obtained using new proposed MCB meshless method
show high accuracy and better convergence rate respect to CB scheme and the results are in good
agreement with standard benchmark solutions in the literature.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The various finite difference methods (FDM), finite volume
methods (FVM) and finite elements methods (FEM) have been
developed for incompressible fluid flow simulation in computa-
tional fluid dynamics (CFD). The main problem of CFD for incom-
pressible flow calculation is the generation of quality mesh around
complex geometries because low speed of gases and fluid flows
are conflict with complex geometries such as air-condition sys-
tems [1,2], heat-exchanger [3,4], electronic equipment cooling [5],
ocean freight [6] and etc.

In general the numerical mesh generation methods are classi-
fied as structured and unstructured methods that is each of these
methods has its own advantages and disadvantages [7,8]. Difficul-
ties in generating quality meshes, particularly in complex geome-
try cases have recently attracted meshless methods. Lohner has
shown that generation of points in on domain by the advancing
front technique is an order of magnitude faster as compared to an
unstructured mesh for a 3D configuration [9,10]. Meshless meth-
ods have advantages regarding the moving boundary and large
deformations compared with mesh-based algorithms. In which
the spatial domain is discretized using a set of points, as opposed
to the cells of a finite volume grid. Clouds are then used to solve
the governing equations.

The flow derivatives are calculated using different approximation
methods like smooth particle hydrodynamics (SPH) [11], generali-
zed finite difference method (GFDM) [12,13], element-free Galerkin
method (EFGM) [14–16], radial basis function method (RBFM)
[17,18], reproducing kernel particle method (RKPM) [19], meshless
local Petrov–Galerkin approach (MLPG) [20,21], etc. Meshless
method does not involve remeshing process and easy to realize
adaptivity strategy. Lohner et al. used the finite point method (FPM)
for compressible flow solution [22]. Recently Ortega et al. developed
the finite point method for solving compressible flow problems
involving moving boundaries and adaptivity [23–25]. The least-
squares meshfree method (LSMFM) was used by Hashemi and
Jahangirian for compressible viscous and inviscid flow calculations
[26,27] and the convergence behavior and approximation accuracy
on Stokes problem by LSMFM have been presented [28]. An upwind
least-squares based meshless method was analyzed and used by Su
et al. for high Reynolds number flow calculations [29].

Different schemes were proposed for the solution of compres-
sible and incompressible flows via finite difference and finite
volume methods. The method of solving low-speed or incompres-
sible flows by the artificial compressibility (AC) correction was first
introduced by Chorin [30] in obtaining steady state solutions. In
this method, a time derivative of the pressure is added to the
continuity equation and a coupling system of equations for
pressure and velocity is obtained. By reviewing the literatures, it
is found that different schemes for discretization of AC equations
have been used in FDM and FVM such as central schemes[31,32],
Godunov-type schemes[33,34] characteristic based schemes (CB)
[35–39] or multi-dimensional characteristic based schemes (MCB)
[40,41].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2015.02.009
0955-7997/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: zamzamian@iaut.ac.ir (K. Zamzamian),

m.y.hashemi@azaruniv.ac.ir (M.Y. Hashemi).

Engineering Analysis with Boundary Elements 56 (2015) 106–118

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2015.02.009
http://dx.doi.org/10.1016/j.enganabound.2015.02.009
http://dx.doi.org/10.1016/j.enganabound.2015.02.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.02.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.02.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.02.009&domain=pdf
mailto:zamzamian@iaut.ac.ir
mailto:m.y.hashemi@azaruniv.ac.ir
http://dx.doi.org/10.1016/j.enganabound.2015.02.009


This work presents an explicit meshless solver for incompres-
sible fluid flow. To achieve the discretized form of equation, the
Taylor series least-squares method is used for approximation of
derivatives at each node which leads to a central difference spatial
discretization. For stable computation of hyperbolic problems,
some kind of numerical dissipation is needed to guarantee the
stability such as upwind schemes. The implementation of upwind
schemes with high order of accuracy is easy in unstructured grids
and meshless methods. Therefore in this paper, the upwind least-
squares meshless method is used.

The main objective of this research is using the MCB scheme in
order to prevent the instabilities in meshless method. The explicit
four-stage Runge–Kutta scheme was used for meshless calcula-
tions and local time stepping and residual smoothing are used to
accelerate convergence. The results presented in this paper are for
the solution of two benchmark problems including a lid-driven
cavity flow and two-dimensional steady and unsteady flows past a
circular cylinder.

After introducing the governing equations in Section 2, dis-
cretized form of equations in the meshless manner is presented in
Section 3. the using of 1D characteristic in least-squares meshless
method is explained in Section 4. The basis of new idea including
characteristic paths and compatibility relations for artificial com-
pressibility equations and relations in meshless algorithm is
presented in Section 5. The boundary treatment and time dis-
cretization methods are given in Sections 6 and 7 and finally the
obtained results using new scheme and discussions about them
are presented in Section 8.

2. Governing equations

The non-dimensional conservation form of the Navier–Stokes
equations for two-dimensional incompressible flows modified by
the AC correction can be expressed as [38]:
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Here W is the vector of primitive variables, F, G and R, S are
convective and viscous flux vectors, respectively. The artificial
compressibility parameter and Reynolds number are shown by β
and Re, respectively. In Reynolds definition, L is reference length, V
is reference velocity and μ is viscosity of fluid that is constant in
flow field.

3. Discretization of equations

The least-squares meshless method is used to discretization of
the flow equations in the conservation form. The spatial deriva-
tives of the function by using the least-squares method are as
following [42]:
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where ϕ is general symbol for flow variables, jþ1

2 is the mid-point

of the edge ij and j is in a cloud of point i (Fig. 1). The coefficients in
Eq. (3) can be calculated as

aij ¼
ωijΔxij

Pm
k ¼ 1ωikΔy2ik

� ��ωijΔyij
Pm

k ¼ 1ωikΔxikΔyik
� �Pm

k ¼ 1ωikΔx2ik
� � Pm

k ¼ 1ωikΔy2ik
� �� Pm

k ¼ 1ωikΔxikΔyik
� �2;

bij ¼
ωijΔyij

Pm
k ¼ 1ωikΔx2ik

� ��ωijΔxij
Pm

k ¼ 1ωikΔxikΔyik
� �Pm

k ¼ 1ωikΔx2ik
� � Pm

k ¼ 1ωikΔy2ik
� �� Pm

k ¼ 1ωikΔxikΔyik
� �2 ð4Þ

where ω is an arbitrary weighting function such as normalized
Gaussian [43,44] (Fig. 2),
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where rmax is the maximum value of rij for point i. In practice,
ϵg ¼ 1 and η¼ 0:5 have given the most accurate results [43].

Applying the least-squares approximations given by Eq. (3) to
each component of flux functions in Eq. (1), a semi-discrete form
of the Navier–Stokes equations at point i is obtained:
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If arithmetic averaging of primitive variables and their deriva-
tions are used at mid-point to calculating the convective and
viscous fluxes, the flow equations discretization lead to checker-
board pattern and the above equation represents an unstable
discretization. Therefore, it is necessary to modify the variables
and their gradients at mid-points to remove solution instability.
For the carrying out the checkerboard pattern in viscous flux
calculating the derivation of any variable ðϕÞ as follows [45]:
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where s!ij is the unit vector between i and j or ð r!ij=j rij!jÞ and
∇ϕ jþð1=2Þ is the average of the gradient at mid-point
ðð∇ϕiþ∇ϕjÞ=2Þ. The ∇ϕi is evaluated as
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Fig. 1. Schematic of point and its neighbors.
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