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a b s t r a c t

A meshless local boundary integral equation method (LBIEM) is used to analyse gravity currents flow in
two-dimensional domains. The method solves the incompressible Navier–Stokes equations with a
transport equation for the particle concentration. The characteristic-based split scheme is used to solve
the governing equations. The LBIEM basic equations are derived via interpolation using radial basis
functions. Two numerical test cases are presented here; both are focused on the typical lock-exchange
channel flow. The LBIEM procedure produces stable solutions with results comparable to those of other
conventional methods.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gravity currents increase when a heavier fluid propagates into a
lighter one. This phenomena is frequently encountered in environ-
ment applications [1]. Particle-driven gravity currents create a special
group of these flows when the difference in density is caused by the
concentration of suspended particles. The particles may settle or
become resuspended. For this reason these currents are known as
non-conservative gravity currents [2]. Moreover, particles do not
exactly follow the fluid flow. When the size of particles is small the
velocity of particles can be expressed as a sum of the fluid velocity and
a constant settling velocity (see, e.g. [3]).

To study the dynamics of particle-driven gravity currents a
number of laboratory experiments were conducted. Most of them
were focused on the spreading of particulate suspensions released
into a rectangular channel full of clear fluid (see e.g. [4,5]). The
direct numerical solution of this problem is usually based on a
numerical scheme that employs a spatial discretization based on
sine and cosine expansions in the horizontal direction together
with finite differences in the vertical direction and a time dis-
cretization performed in a fully explicit manner with a third-order
Runge–Kutta scheme. This scheme is very efficient but it is limited
to rectangular areas (see [6,3,7]).

Meshless methods have recently been presented as attractive tools
for solving computational fluid dynamics problems. They do not
require the mesh generation employed by other methods, because

they are defined by a cloud of points. Therefore, they are less
computationally expensive than mesh-generation methods because
the mesh generating phase is significantly reduced and because they
increase flexibility in adapting the density of the nodal points at any
place of the problem domain such that the resolution and fidelity of
the solution can be improved easily. These features make meshless
methods powerful tools in the solving of a wide range of scientific
problems. During the past year, various meshless methods have been
developed by different groups. These include smooth particle hydro-
dynamics (SPH) [8], the least square collocation meshless method
[9–11], the meshless local Petrov–Galerkin (MLPG)method [12,13], the
local boundary integral equation method (LBIEM) [14–16], and the
radial basis integral equation method (RBIEM) [17–19]. Ghasemi et al.
[20] used SPH to demonstrate the possibility of this method to solve
density currents flow.

The present paper focuses on the LBIEM using the characteristic
based split scheme (CBS) to solve the two-dimensional particle-
driven currents flow. The radial basis functions (RBF) approxima-
tion is used for interpolating the variables. Two different test cases
of 2D lock-exchange flows are solved and compared with previous
solutions [6,21,7] to present the possibility of LBIEM as a solution
for this type of problem.

2. Governing equations

The motion of the fluid phase is governed by the Navier–Stokes
equations which can be written in its primitive variables as

∂ui

∂xi
¼ 0
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where ui is the fluid velocity vector component, p is the pressure, ν
is the kinematic viscosity, ρ is the density of a liquid, C is the
particle-number density (i.e. the concentration), and Fi represents
Stoke's drag which is the dominant flow force on an individual
particle in direction i [7]. The particle field can be treated in an
Eulerian manner (see [7]) and is governed by the following
advection–diffusion equation:

∂C
∂t

¼D
∂2C
∂xj∂xj

� ∂
∂xi

upiC
� � ð2Þ

where D is the coefficient of diffusion and upi is the particle
velocity in the direction i. The particle velocity can be considered
as (see also [23])

upi � uiþusi�τð1�βÞ ∂
∂xj

ujui
� �þ∂ui

∂t

� �
ð3Þ

where ui is the ith component of the fluid velocity, usi is the ith
component of the settling velocity of particles, τ is the particle
response time, and β is the coefficient that depends on the ratio of
the particle and fluid densities. When the particles are assumed to
be spherical and sufficiently small the particle response time and
the settling velocity can be written as

τ¼ d2ðρp=ρþ1=2Þ
18νf

; β¼ 3
2ðρp=ρþ1Þ;

usi ¼ τð1�βÞgi ¼
d2ðρp�ρÞ

18μf
gi ð4Þ

Here, d is the particle diameter, ρp is the particle density, f is the
correction for non-Stokesian drag and gi is the gravity vector
component g¼ 0; �g

� �
[2].

Eqs. (1) and (2) can be made dimensionless using transforma-
tions of coordinates and velocities

~xi ¼
xi
L

~ui ¼
ui

ub
ð5Þ

where L is the characteristic length and ub is the bulk velocity
defined as [3]

ub ¼
ffiffiffiffiffiffi
~gL

p
~g ¼ g

ρ1�ρ0

ρ0
ð6Þ

The dimensionless concentration and pressure can be defined as

~C ¼ ρ�ρ0

ρ1�ρ0
~p ¼ p

ρ0u
2
b

ð7Þ

The dimensionless governing equations can be written as
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where egi ¼ ð0; �1Þ is the unity vector pointing in the direction of
gravity. Three dimensionless parameters appear in (8), namely the
Grashof number Gr, the Schmidt number Sc, and the dimension-
less particle velocity ~upi, which are defined as [7]

Gr ¼ ubL
ν

� �2

; Sc¼ ν
D

~upi ¼ ~uiþ ~usi� ~τ
∂
∂xj

~uj ~ui
� �þ∂ ~ui

∂t

� �
ð9Þ

where the particle Stokes number ~τ can be computed as

~τ ¼ τð1�βÞub

L
ð10Þ

A characteristic-based split (CBS) algorithm is used to solve this
problem (see [24–26]). The time derivative of the velocity in the
second equation in (8) can be replaced with a difference resulting
in the following relation:
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where upper indexes n and nþ1 indicate time steps and
Δt ¼ tnþ1�tn is the length of the time interval. The last term in
the square brackets acts as the stabilizing term (see [27]). Eq. (11)
is simplified using the fractional time step approximation (e.g.,
[10,28]), which computes the intermediate velocity ~un

i using the
simplified momentum equation
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Comparing (11) and (12) gives

~unþ1
i ¼ ~un

i �Δt
∂ ~pnþ1

∂xi
ð13Þ

The intermediate velocity components ~un

i do not satisfy the
continuity equation in (8). The velocity components ~unþ1

i must
satisfy the continuity equation, which implies

∂
∂xi

~un

i �Δt
∂ ~pnþ1
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 !
¼ 0 ð14Þ

A pressure Poisson equation results directly from (14)

∂2 ~pnþ1

∂xi∂xi
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with Neumann boundary conditions that accrue from (13)
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ni ð16Þ

where ni is the outer normal vector component in the i direction.
In the last step the dimensionless concentration ~C can be

solved using the CBS algorithm (see [24,29])
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3. Meshless local integral formulation

The area of interestΩwith the boundary Γ is covered by points
within the area and also on the global boundary (see Fig. 1).
Consider a local circular sub-domain Ωs with boundary Λs cen-
tered at every point s. This sub-domain is regular around all the
internal points, but at the points on the global boundary this local
boundary consists of a part of the global boundary intersected
with the local sub-domain Γs (see Fig. 2). To express the local
boundary integral form of the governing equations developed in
the previous section in a domain Ωs, we apply the weighting
residual principle to Eqs. (12), (13), (15) and (18) to obtain the
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