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a b s t r a c t

A time domain non-hypersingular traction boundary integral equation method (BIEM) is proposed for
dynamic crack analysis of piezoelectric solids. Using the boundary integral equation method, the time
domain hypersingular integral equations for a dynamic crack in a 2D infinite piezoelectric solid
subjected transient loads are derived. Considering the properties of the fundamental solutions, the
hypersingular integral equations are reduced to singular integral equations by using the technique of
integration by parts, in which the unknown functions are the tangential derivatives of the displacement
and electrical potential discontinuities of the crack surfaces. To solve the time domain singular integral
equations numerically, the quadrature formula of Lubich is applied for the temporal discretization, while
the Gauss–Chebyshev quadrature method is used for the spatial discretization. Numerical examples are
carried out to verify the accuracy of the present method by comparing the numerical results obtained by
other scholars. Finally, several numerical results are presented and discussed to show the effects of the
mechanical impact loading, crack-face conditions and piezoelectric coupling coefficient on the dynamic
stress intensity factors.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Owing to their abilities to convert energy between electrical and
mechanical, piezoelectric materials are widely applied in transducers,
actuators, sensors and so on. However, cracks and cracks-like defects
exist in many brittle piezoelectric solids. Besides, these smart devices
always work under dynamic loadings such as shock, sudden impact.
Thus, dynamic fracture analysis is an important issue to evaluate the
mechanical and electrical integrity, the reliability and durability of
piezoelectric devices.

Since analytical solutions can be obtained only for very simple
crack geometry and loading configurations, numerical methods are
essential to analyze arbitrary crack and structure configurations.
Enderlein et al. [1] presented an explicit finite element scheme to
analyze plane cracks in piezoelectric structures. An extended finite
element method was applied to simulation of stationary dynamic
cracks in piezoelectric solids under impact loading by Bui and Zhang
[2]. Liu and Dai [3] introduced a point interpolation mesh free
method for static and mode frequency analysis two dimensional

piezoelectric structures. Sladek et al. [4] proposed a meshless local
Petrov–Galerkin method for plane piezoelectricity. Integral transform
technique is also widely used in dynamic analysis. Chen and Yu [5–7]
have studied the cracked piezoelectric solid under anti-plane impact.
Shindo et al. [8] have studied the impact response of a finite crack in
an orthotropic piezoelectric ceramic. Wang and Yu [9] have studied
the response of piezoelectric strip with a crack subjected to the
mechanical and electrical impacts. Moreover, the integral transform
technique has also been applied into study of magneto-electro-elastic
materials [10–17]. For the transformmethod, the numerical inversion
of Laplace transform must be calculated carefully to obtain steady
results.

BIEM and BEM are the most popular numerical methods in the
solution of static and dynamic crack problems in piezoelectric solids.
Dynamic fundamental solutions for frequency-domain have been
presented in [18–19] and for time-domain have been presented in
[20–22]. Due to dynamic piezoelectric fundamental solutions do not
have closed form expressions and quite complex, it is the biggest
challenge to form an easy and efficient numerical implementation. To
circumvent this difficulty, dual reciprocity BEM has been developed
in [23–25]. Frequency domain BEM has been presented by Denda
et al. [18] for eigenvalue problems. Time harmonic crack analysis has
been presented in [26–30] by using non-hypersingular traction BIEM
to study the sensitivity of SIFs on the frequency of applied
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mechanical and electrical load. For time-domain transient dynamic
crack analysis, Saez et al. [31], Garcia et al. [32,33] has proposed a
time domain BEM using a combination of the strongly singular
displacement boundary integral equations and the hypersingular
traction boundary integral equations to transient dynamic analysis,
and a time-domain collocation Galerkin BEM has been implemented
byWunshe et al. [34]. Especially, the convolution quadrature formula
of Lubich [35,36] was firstly introduced into dynamic fracture
analysis by Zhang [37], which is quite stable and accurate. To solve
the Cauchy type singular integral equations, BEM was used in [26–
30] and Gauss–Chebyshev method was used in [9,10,12].

In this paper, a time-domain singular BIEs for dynamic analysis
of an infinite piezoelectric solid with stationary crack is presented.
Impact loading acted upon the crack faces is considered, which the
impact loading can be either mechanical, or electrical, or combina-
tion of both. As for the crack faces, electrically impermeable and
permeable conditions are both taken into consideration. Due to the
corresponding initial-boundary problem can't be solved analytically,
the basic unknown functions which are the tangential derivatives of
the extended displacements discontinuities across the crack faces
have to be solved numerically. The Lubich's convolution quadrature
formula is adopted to approximate the temporal convolution
integral. And the classical Gauss–Chebyshev quadrature method is
applied to deal with the spatial singular integral. After this nu-
merical discretization, a system of linear algebraic equations is
obtained. Meanwhile the single valued displacement conditions can
be discretized as the same way. These simultaneous equations are
solved step by step, and the transient dynamic stress and electrical
displacement intensity factors are computed.

2. Basic equations

Under the quasi-electric assumption, and in the absence of
body forces and electric charges, the motion equilibrium equations
and the Gauss's law for the electric displacement can be expressed
as [38]

σji;j ¼ ρ €ui; Di;i ¼ 0 ð1Þ

where ρ is the mass density, ui denotes displacements, σij and Di

represent the mechanical tensor and the electric displacement
vector respectively. Throughout the analysis, a comma after a
quantity designates spatial derivative, and superscript dot stands
for temporal derivative. The conventional summation rule over
repeated indices is implied. The constitutive equations for homo-
geneous and linear piezoelectric materials are given by

σij ¼ cijklεkl�eijkEk; Di ¼ ekliεklþγikEk ð2Þ

where cijkl is the elasticity tensor, eijk is the piezoelectric tensor, γik
is the dielectric tensor. The relations between strain tensor εij and
displacement ui as well as the electric field vector Ei and the scalar
electric potential φ are given by

εij ¼ 1
2 ui;jþuj;i
� �

; Ei ¼ �φ;i ð3Þ

For convenience, the generalized displacements, the general-
ized stresses and the generalized elasticity are defined as follow:

UI ¼
uI ; I ¼ 1;2
ϕ; I ¼ 4

(

Σ iJ ¼
σiJ ; J ¼ 1;2
Di; J ¼ 4

(
EiJKl ¼

ciJKl; J;K ¼ 1;2
eKli; J ¼ 4;K ¼ 1;2
eJil; K ¼ 4; J ¼ 1;2
�γil; J ¼ K ¼ 4

8>>>><
>>>>:

ð4Þ

Thus, the generalized motion equations and generalized con-
stitutive equations are written as

Σ iJ;i ¼ ρδn

JK
€UK ; Σ iJ ¼ EiJKlUK;l ð5Þ

where the generalized Kroneker delta δn

JK is defined as

δn

JK ¼ δJK ; J;K ¼ 1;2
0; otherwise

(
ð6Þ

lower case latin indices take the values 1 and 2(elastic), while
capital latin indices take the values 1, 2(elastic) and 4(electric).

A crack in an infinite, two-dimensional piezoelectric solid is
considered in this paper. The initial conditions at timetr0 are
specified as

UIðx; tÞ ¼ _UIðx; tÞ ¼ 0 ð7Þ

As for crack-faces boundaries, the conditions of the electrically
impermeable crack are prescribed

pIðx; tÞ ¼ pn

I ðxÞHðtÞ; for xASC : ð8aÞ

For electrically permeable crack, the electrical potential ϕ
across the crack should satisfies

~U4ðx; tÞ ¼ϕðxASC þ ; tÞ�ϕðxASC � ; tÞ ¼ 0: ð8bÞ

here, pn
I ðxÞ represent the amplitude of the prescribed generalized

crack-face loading, HðtÞ stands for the Heaviside step function, SC þ

and SC � represent the upper and lower crack-faces.

3. Boundary integral equations

By using the Radon transform technique, the time-domain
extended fundamental solutions have been analytically obtained
by Wang [22]. The extended displacement fundamental solution
UG

IJ can be expressed as

UG
IJðx; y; tÞ ¼ �HðtÞ

8π2

Z
nj j ¼ 1

XM
m ¼ 1

Λm
IJ

ρc2m

1
cmtþnU ðx�yÞdn

þ 1

2π
ffiffiffiffiffi
Δ

p log ðRÞδ3Iδ3JδðtÞ ð9Þ

where n¼ ðn1; n2Þ, cm and Λm
IJ denote the wave propagation vector,

the phase velocities and the projection operator given in [22], x is
the source point and y is the field point, Δ and R are defined as

Δ¼ detðγijÞ; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ�1
ij ðxi�yiÞðxj�yjÞ

q
ð10Þ

The traction fundamental solution TG
IJ can be obtained by

TG
IJðx; y; tÞ ¼

XG

kIJ
ðx; y; tÞUnkðyÞ ð11Þ

with

XG

kIJ
ðx; y; tÞ ¼ EkIRl

∂UG
JRðx; y; tÞ
∂yl

ð12Þ

where nk ðyÞare the components of the unit outward normal at the
field point.

For an infinite cracked piezoelectric solid, the extended dis-
placements at the source point can be obtained by integral
formulation, in which the generalized Betti-Rayleigh reciprocity
theorem is adopted

UIðx; tÞ ¼ �
Z
SC þ

TG
IJðx; y; tÞn ~UJðy; tÞdsðyÞ ð13Þ
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