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a b s t r a c t

A weighting-iteration method in the time domain is developed to calculate the scattered waves
from a complex-shaped scatterer. The incident waves can be mono-frequency or multi-frequency,
and the complex object includes sharp edges and dramatic variations in geometry. The solid angles
on the boundary elements of a complex-shaped scatterer are generally reduced to below the
standard value of 0.5 for points on a smooth part of the boundary. These reduced solid angles
destroy the convergence history during the iteration process in the time domain. A weighting
function associated with the variation of solid angles is introduced to robust and rapid convergence
in the time domain.

The new method is used to calculate the scattering from a cube with sharp edges and an
indented surface. The weighting function speeds up the convergence history to reach a robust
convergence for both mono- and multiple-frequency incident waves.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The computation of scattered waves from an object is applied
in many fields such as remote sensing and military detection.
Scattering problems in underwater acoustics are an important
topic of research, which depends on solving scattering problems
accurately and efficiently.

Since the 1960s, researchers such as Schenck [7] and Burton
and Miller [2] have attempted to resolve exterior scattering pro-
blems. Schenck [7] introduced the CHIEF method to overcome the
problem of non-unique solutions at fictitious eigenfrequencies.
Seybert et al. [15] developed a second-order boundary element
method in the frequency domain, and Seybert and Soenarko [16]
dealt with the infinite half-space problem. Seybert and Wu [17]
and Li et al. [12] discussed arbitrary impedance on an infinite free
surface. Chaosong [3] derived a direct boundary integral equation
method in the frequency domain. Kress and Mohsen [11] and
Ochmann [14] developed the source simulation technique in the
frequency domain for faster computation of complex structures.

The time-domain method is a better choice for multi-frequency
incident waves. Mansur and Brebbia [13], Groenbroom [6], Dohner
et al. [5] and Araújo et al. [1] derived time-domain boundary
element formulations for transient problems. According to Araújo
et al. [1], numerical errors propagate forward in time and result in
incorrect solutions. Kao and Kehr [10] proposed a robust iteration
method in the time domain to solve scattered waves. Kao and Kehr

[10] expressed the oscillatory integrals in the boundary integral
equation relative to the retarded time, which made the iteration
process easier. The iteration procedure proposed by Kao and Kehr
[10] was proven to be convergent, and the results are therefore
correct. Bi et al. [4] solved the transient acoustic radiation from an
arbitrarily shaped source in the time domain using a cubic spline
interpolation. Li et al. [9] presented a time-domain boundary
integral equation framework to analyse the acoustic scattering
from spherical objects in a homogeneous medium.

The solid angles of some of the panels on the surface of a
complex-shaped scatterer will be clearly reduced and deviated
from the standard value of 0.5, making it difficult to obtain
convergent results in the time domain. Kao and Kehr [10] only
solved objects with a standard solid angle value of 0.5, and thus
did not consider the problem of deviating solid angles. In this
paper, the method used by Kao and Kehr [10] is extended to solve
the scattered waves from a complex object. A suitable weighting
function relative to the solid angles is found, which corrects the
convergence tendency and speeds up the convergence. Several
iterations are initially conducted with this weighting function.
The last result of these iterations is then treated as the initial
condition for the next round of formal iterations without the
weighting function. The selected object for the calculation fea-
tures sharp edges and huge variations in geometry. Both mono-
and multi-frequency incident waves are considered using the
new method.
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2. Theoretical formulations

An arbitrarily shaped body immersed in a semi-infinite domain
is considered, as shown in Fig. 1. The body surface is denoted by S,
its outward normal by n, the scattered potential by φs, the incident
potential by φi and the interface of the body and the infinite plane
by Sc. The infinite plane of the interface can be simulated by a
mirror-image body.

By applying Green’s second identity and the Sommerfeld
radiation condition, a boundary integral equation is defined on S,
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G(P,Q) is the half-space Green function that depends on both
locations of a field point, P, and a source point, Q,
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where r is the distance between P and Q, and ri is the distance
between P and Q′, the imaged point of Q, as shown in Fig. 1. The
reflection coefficient, RH, is equal to 1 for a rigid infinite plane, and
�1 for a soft infinite plane. C(P) in Eq. (1) is the solid angle for the
field point, P, and can be evaluated as follows (see, e.g. Seybert and
Wu [17]):
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if P is on the intersection of S and Sc.

3. Formal iteration scheme

The iteration scheme for the scattered wave in the time domain
proposed by Kao and Kehr [10] is
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Apart can be expressed in the time domain as
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Because the solid boundary condition is applied and the inci-
dent potential is given, Bpart in Eq. (5) is known.
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Please refer Kao and Kehr [10] for detailed derivations of Apart

and Bpart.
The oscillatory integrals in the boundary integral equation are

expressed in forms relative to the retarded time, which makes the

iteration process easier. Treating the incident wave as the sum of
many harmonics, we calculate the time interpolation using a
Fourier series. Therefore, the numerical error due to the time
interpolation is minimised, and only the spatial discretisation is
needed in the present method.

The iteration scheme is based on Eq. (5). Bpart in Eq. (5) is
known and calculated by the incident wave. An initial scattered
potential, φs, on the body equal to zero is first prescribed. Then,
the scattered potential field on the body on the left-hand side of
Eq. (5) can be updated explicitly by calculating Apart according to
Eq. (6).

The time step is repeated over the longest period (T¼1/fMIN) of
the multi-frequency input. This iterative process is repeated until
proper convergence is achieved. The time marching is divided into
k time steps (ISTEP¼k) within the longest period.

The procedure of the iteration scheme is indicated in Fig. 2 and
further details can be found in Kao and Kehr [10].

4. Weighting-iteration method

Kao and Kehr [10] computed the scattered waves from a half
sphere and a cubic object. From Kane [8] it is known that the value
of a solid angle on a smooth surface is equal to 0.5. The solid angle
of each panel on these two objects is almost 0.5 because there are
no dramatic variations in their geometry.

If the scatterer is of a complex shape, the solid angles of some
panels on the complex structure will be reduced and clearly
deviate from the standard value of 0.5. This makes it difficult for
the iteration scheme of Kao and Kehr [10] to find a convergent
result and the convergence will be very slow. Therefore, in this
paper, the iteration scheme in Eq. (5) is modified by introducing a
weighting-iteration method in the time domain to solve the
scattering problems of complex objects.

By reformulating Eq. (5), the iteration scheme can be re-pre-
sented as follows.
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The suffix ( )nþ1 indicates the values by the (nþ1)-th iteration,
and ( )n the values by the n-th iteration. The difference between
the (nþ1)-th and n-th iterations can be expressed as follows.
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To speed up the convergence, a weighting function is intro-
duced to Eq. (8), as follows:
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W is the weighting function for complex-shaped scatterers.
Eq. (10) is only used for panels with deviating solid angles of less
than 0.5. The original iteration scheme shown in Fig. 2 is thus

Fig. 1. A body of arbitrary shape on an infinite plane.
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