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a b s t r a c t

One considers linearly elastic composite media, which consist of a homogeneous matrix containing a
statistically homogeneous random set of aligned homogeneous heterogeneities of non-canonical shape.
Effective elastic moduli as well as the first statistical moments of stresses in the phases are estimated
through the averaged boundary integrals over the inclusion boundaries. The modified popular micro-
mechanical models are based on the numerical solution for one inhomogeneity inside the infinite matrix
loaded by remote homogeneous effective field. This solution is obtained by a meshfree method based on
fundamental solutions basis functions for a transmission problem in linear elasticity. The problem here
addressed, consists in computing the displacement and traction fields of an elastic object, which has
piecewise constant Lamé coefficients, from a given displacement (or stress) field on the infinity. The main
properties of the method are analyzed and illustrated with several numerical simulations in 2D domains.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of the behavior of composite materials in terms of
the mechanical properties of constituents and their microstructure
is a central problem of micromechanics, which is evidently reduced
to the estimation of stress fields in the constituents. Appropriate,
but by no means exhaustive, references for the estimation of
effective elastic moduli of statistically homogeneous media are
provided by the reviews [1–8]. It appears today that variants of the
effective medium method [9,10] and the mean field method [11,12]
are the most popular and widely used methods. Recently a new
method has become known, namely the multiparticle effective field
method (MEFM) was put forward and developed (see for references
Buryachenko [6]). The MEFM is based on the theory of functions of
random variables and Green's functions. Within this method one
constructs a hierarchy of statistical moment equations for condi-
tional averages of the stresses in the inclusions. The hierarchy is
then cut by introducing the notion of an effective field. This way the
interaction of different inclusions is taken into account. The popular
schemes of micromechanical analysis are based on numerical
solutions for estimation of stress (or strain) distribution tensor for
single (at least) inclusion inside infinite matrix subjected to the so-
called effective field.

Obtaining analytical solutions is not feasible in general even for
a finite number of interacting particles, so various numerical

methods have been developed, mostly based on the finite element
analysis (FEA) and boundary integral equation BIE) technique. A
distinct advantage of the BIE compared to the FEA is that the BIEs
require meshing only the boundary surface of computational
domain as opposed to the entire 3-D domain for FEA. In the BIE
singular forces distributed, e.g., on the surface of particles, depend
on the external field, thus yielding an integral equation for the
singularity strengths. The most popular formulation is the direct
one where the variables of interest are the surface displacement
and traction fields that lead to a set of ill-conditioned linear sys-
tems on discretization. The indirect formulation (e.g. the com-
pleted double layer boundary element method, see [13,14]) results
in a set of integral equations of the second kind, and therefore is
numerically well-behaved. Although this formulation is more
complicated than the direct method, however, it leads to an
unconditionally convergent iterative scheme.

Despite the FEM's and BEM's popularity, there are many pro-
blems (e.g. meshing surface in 3D, computing of singular integrals)
where it is desirable to improve the efficiency of traditional
methods. In the alternative (proposed by Trefftz), the trial func-
tions must satisfy the governing equation exactly and the error in
the satisfaction of the boundary conditions is minimized. As a
consequence, it is interesting to develop some alternative so-called
meshless methods (see [15] for an overview and historical back-
ground on the subject) of the local boundary integral equation,
boundary knot method, boundary collocation method, non-
dimensional dynamic influence functions method, and the
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method of fundamental solutions (MFS) belonging to a boundary
method for solving boundary value problems, which can be
recognized as a discrete type of the indirect boundary element
method with a concentrated source instead of distribution (see for
references [16–19]). In this study, we will bring the MFS system-
atically for a single inclusion inside the infinite homogeneous
matrix subjected to homogeneous loading. The MFS belonging to
the BIE technique has a very attractive option since it is truly
meshless, simple to program, and is able to take into account sharp
changes in geometry. The MFS and related methods over the last
few years have found extensive application in computing solutions
to a broad range of problems [20,21].

In the MFS the solution is approximated by a finite linear
combination of fundamental solutions (FS, assumed to be expli-
citly defined) with respect to source points which are positioned
outside the solution domain. The unknown coefficients in the
mentioned linear approximation can be determined by matching
the boundary conditions in a variety of ways, the simplest (and
most popular) being by collocation on a set of physical boundary
points. In contrast to domain discretization methods such as the
finite element (FEM), the MFS is a boundary method which means
that only the boundary of the solution domain needs to be con-
sidered. Moreover, the MFS is a boundary-type meshless method
which does not need a boundary element mesh, either for pur-
poses of interpolation of the trial and test functions of the solution
variables, or for the integration, and only a set of source points is
required for the discretization of the problem being analyzed.
However, unlike the BEM, no potentially troublesome integration
is required in the MFS due to the placement of source points
outside the solution domain when the singular integrals are
avoided. At last MFS is adaptive in the sense that it can take into
account sharp changes in the solution and in the geometry of the
domain and can easily handle complex boundary conditions.
Despite the mentioned advantages, a few disadvantages are that
the positioning of the source points is preassigned and also the
resulting system of algebraic equations is ill-conditioned that leads
to oscillation of the convergence curve of the numerical solution
when a large number of source points are used. Optimization of
source points allocation substantially reduces computational time
while some regularization methods, such as the damped singular
value decomposition, the truncated singular value decomposition
or the Tikhonov [22] regularization, can be used to mitigate the ill-
conditioned effect (see [23]). The next step is checking the
approximation in other (not collocation) points at the physical
boundary (or interface) surface. The strain and stress field vari-
ables outside the boundary can be obtained directly when the
derivatives are analytically calculated from the MFS expansion
representation over the source points with the coefficients found
by matching the boundary condition at the given collocation
points at the physical surface.

Thus, the stress distributions inside a single inclusions inside
infinite matrix are assumed to be found. This solution then can be
incorporated into the one or another general framework of ana-
lytical micromechanics for self-consistent estimations of the so-
called effective field (see for details Buryachenko [6]). However, all
mentioned methods are based on the effective field hypothesis
(EFH, even if the term “effective field hypothesis” was not indicated)
according to which each inclusion is located inside a homogeneous
so-called effective field (see for references [6]). Effective field
hypothesis is apparently the most fundamental, most prospective,
and most exploited concept of micromechanics. This concept has
directed a development of micromechanics over the last sixty
years and made a contribution to their progress incompatible with
any another concept. The idea of effective field was added by the
hypothesis of “ellipsoidal symmetry” for the distribution of inclu-
sions attributed to Willis [24]. However, Buryachenko [25,26] has

proved that the EFH is a central one and other concepts play a
satellite role providing the conditions for application of the EFH.

The paper is organized as follows. In Section 2 we present the
basic field equations of linear elasticity, notations, statistical
description of the composite microstructure as well as repre-
sentation of the effective properties through the surface integrals
over the inclusion boundaries. In Section 3, one presents the
method of fundamental solution (MFS) adapted to the solution for
one homogeneous noncanonical inclusion inside the infinite
homogeneous matrix. The known micromechanical method of the
effective field (MEF, see for references [6]) and Mori–Tanaka
method (MTM, [11,12]) is presented in Section 4 with the stress
concentration factors and effective compliances expressed though
the boundary integral of statistical averages over the boundary
inclusions. In Section 5 we estimate the numerical errors of both
the different versions of the MFS and the different choices of the
source sets. The numerical evaluation of the effective Young
modulus is shown for statistically homogeneous composites
reinforced by aligned identical homogeneous heterogeneities of
noncanonical shape.

2. Preliminaries

Let a full space Rd with a space dimensionality d (d¼2 and d¼3
for 2-D and 3-D problems, respectively) contains a homogeneous
matrix vð0Þ and, in general, a statistically inhomogeneous set X ¼ ð
viÞ of heterogeneities vi with indicator functions Vi and bounded
by the closed smooth surfaces Γi≔∂vi ði¼ 1;2;…Þ defined by the
relations ΓiðxÞ ¼ 0 (xAΓi), ΓiðxÞ40 (xAvi), and ΓiðxÞo0 (x=2vi). It
is assumed that the heterogeneities can be grouped into compo-
nents (phases) vðqÞ ðq¼ 1;2;…;NÞ with identical mechanical and
geometrical properties (such as shape, size, orientation, and
microstructure of heterogeneities).

2.1. Basic equations

Let a linear elastic body occupy an open bounded domain w�
Rd with a smooth boundary Γ and with an indicator function W
and space dimensionality d (d¼2 and d¼3 for 2-D and 3-D pro-
blems, respectively). The domain w contains a homogeneous
matrix vð0Þ and a statistically inhomogeneous set X ¼ ðvi;Vi; xiÞ of
inclusions vi with indicator functions Vi and centers xi. It is
assumed that the inclusions can be grouped into component
(phase) vð1Þ with identical mechanical and geometrical properties
(such as shape, size, orientation, and microstructure of inclusions).
For the sake of definiteness, in the 2-D case we will consider a
plane-strain problem. At first no restrictions are imposed on the
elastic symmetry of the phases or on the geometry of the
inclusions.1

The problem is governed by the local equations of elastostatics
of composites

∇σðxÞ ¼ 0; ð1Þ

σðxÞ ¼ LðxÞεðxÞ or εðxÞ ¼MðxÞσðxÞ; ð2Þ

εðxÞ ¼ ½∇ � uþð∇ � uÞ> �=2; ∇� εðxÞ �∇¼ 0; ð3Þ
where ð�Þ> denotes transposition, � and � are the tensor and
vector products. LðxÞ and MðxÞ � LðxÞ�1 are the known stiffness
and compliance fourth-order tensors, and the common notation
for contracted products has been employed.

1 It is known that for 2-D problems the plane-strain state is only possible for
material symmetry no lower than orthotropic (see e.g. [27]) that will be assumed
hereafter in the 2-D case.
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