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a b s t r a c t

This paper presents a boundary element formulation for the solution of the Mild-Slope equation in wave
propagation problems with variable water depth in one direction. Based on Green's function approx-
imation proposed by Belibassakis [1], a complete fundamental-solution kernel is developed and com-
bined with a boundary element scheme for the solution of water wave propagation problems in closed
and open domains where the bathymetry changes arbitrarily and smoothly in a preferential direction.
The ability of the proposed formulation to accurately represent wave phenomena like refraction,
reflection, diffraction and shoaling, is demonstrated with the solution of some example problems, in
which arbitrary geometries and variable seabed profiles with slopes up to 1:3 are considered. The
obtained results are also compared with theoretical solutions, showing an excellent agreement that
demonstrates its potential.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Wave propagation in variable-depth waters is a problem of
significant importance in coastal engineering with applications in
the design and maintenance of harbors, coastal defense works and
hydrodynamic and sediment transportation studies. It is well
known that the transmission of linear waves in intermediate and
deep waters can be reproduced by the elliptical Mild-Slope
Equation MSE) which was derived by Berkhoff [2] in the early
1970s. The MSE considers simultaneously the effects of diffraction,
refraction, reflection and shoaling of linear water surface waves
and it is formally valid for slowly varying sea bed slopes, i.e.
∇h⪡kh, being h the water depth and k the wave number. The
validity of the MSE has been evaluated by Tsay and Liu [3]
demonstrating that it produces accurate results for bottom slopes
up to 1:1 when waves are propagating perpendicularly to the
bathymetry contour lines. Nevertheless, Booij [4] verified that, for
general directions of wave propagation, the MSE is able to provide
acceptable accuracy for bottom profiles with slopes up to 1:3,
enough for practical applications.

Some extensions of the MSE have been proposed in subsequent
works. For example, a time-dependent extension of the MSE was

derived by Kirby [5] for the case of waves propagating over ripple
beds. Also, an Extended Mild-Slope Equation (EMSE) was proposed
by Massel [6] that includes higher-order terms, providing a better
accuracy for more complicated bathymetries. Energy dissipation
effects, such as wave breaking and bottom friction, were included
in [7]. Chamberlain and Porter [8] suggested a Modified Mild-
Slope Equation (MMSE), later improved by Porter and Staziker [9],
which retains the second order terms discarded by Berkhoff in the
formulation of the MSE. On the other hand, Suh et al. [10] derived
a time-dependent equation for wave propagation on rapidly
varying topography and Chandrasekera et al. [11] included terms
for relatively steep and rapidly undulating bathymetries. Later, Lee
et al. [12] presented an hyperbolic MSE for rapidly varying topo-
graphy, followed by the works of Copeland [13] and Massel [6] in
the same direction. Finally, the recent works of Hsu et al. [14] and
Li et al. [15,16] considered higher-order bottom effect terms to
account for a rapidly varying topography and wave energy dis-
sipation in the surf zone. Basically, all these formulations introduce
higher-order terms in the MSE due to the bottom effects, usually
proportional to the square of the bottom slope or the bottom
curvature.

In general, the MSE represents the basic framework for the
simulation of surface wave transmission problems in variable
water depths and different numerical solution procedures have
been proposed in the literature since the pioneering work of
Berkhoff [2].
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Traditionally, the MSE has been solved using the Finite Element
Method (FEM) [17] and the Finite Difference Method (FDM), where
we can include the works of Li and Anastasiou [18], Panchang and
Pearce [19]. Nevertheless, finite difference schemes and the finite
element method present a common deficiency; open and partially
reflecting boundary conditions are difficult to represent. These
deficiencies have been studied by many authors, like Chen et al.
[20,21] using hybrid FEM formulations, together with the initial
proposals of Berkhoff [17] and Tsay et al. [3,22] including bottom
friction effects. For the closing boundary conditions, Bettess and
Zienkiewicz [23] and Lau and Ji [24] used infinite elements in the
outer regions. Dirichlet to Neumann (DtN) boundary conditions
were proposed by Givoli et al. [25–27] as an analytical procedure
to reproduce exact non-reflecting boundary conditions in some
particular cases. This idea, was followed by Bonet [28] to derive
the discrete non-local (DNL) boundary condition. More rudimen-
tary iterative methods have also been proposed to define absorb-
ing boundary conditions; see Beltrami et al. [29], Steward and
Panchang [30], Chen [31] or Liu et al. [32], among others. It is
important to mention that a boundary element formulation of the
MSE for open domains and variable bathymetry, would be able to
palliate the drawbacks of FEM, providing a better approximation
for the simulation of absorbing boundaries.

The MSE problem has also been solved using the Boundary
Element Method (BEM). Boundary element techniques prove to be
very accurate in wave refraction–diffraction problems with open
domains, presenting the additional benefit that the radiation
condition to infinity is automatically satisfied. In order to improve
the solution of the FEM schemes, Hauguel [33] and Shaw and Falby
[34] first coupled FEM and BEM. Hamanaka [35] proposed a gen-
uine BEM based boundary condition for open, partial reflection
and incident-absorbing boundaries. At the same time, Isaacson
and Qu [36] introduced a boundary integral formulation to
reproduce the wave field in harbors with partial reflecting
boundaries and Lee et al. [37,38] included the effect of incoming
random waves. The Dual Reciprocity Boundary Element Method
(DRBEM) has been used to model wave run-ups by Zhu [39]. Later,
this technique was extended to model internal regions with vari-
able depth surrounded by exterior regions with constant bathy-
metry [40–43]. More recently, Naserizabeh et al. [44] proposed a
coupled BEM-FDM formulation to solve the MSE in unbounded
problems.

In this context, this paper presents a BEM formulation for the
MSE in wave propagation problems with variable water depth in
one direction. Based on Green's function approximation proposed
by Belibassakis [1], a complete fundamental-solution kernel is
developed and combined with a boundary element scheme for the
solution of water wave propagation problems in closed and open
domains where the bathymetry changes arbitrarily and smoothly
in a preferential direction. This particular case is of high practical
interest, because the bathymetric lines can usually be considered
straight and parallel to the coast-line. A BEM formulation of the
MSE for variable bathymetry not only extends the range of appli-
cations of the BEM for the solution of coastal engineering pro-
blems but also, combined with the FEM and used as a matching
condition, offers the possibility of modeling very accurately the
radiation condition to deeper waters.

The paper is organized as follows. Section 2 first reviews the
formulation of the MSE. In Section 3, the fundamental solution of
the MSE for variable water depth is approximated in the frequency
domain. The mathematical and numerical principles of the BEM
for wave scattering problems are covered in Sections 4. Section 5 is
dedicated to the validation of the proposed BEM formulation
through the solution of wave propagation problems in variable
water depth. Finally, Section 6 closes with the conclusions.

2. The Mild-Slope equation

The classical MSE [2,17] is obtained from the linear wave theory
using a Cartesian coordinate system with the (x,y)-plane located
on the quiescent water surface and the z direction pointing
upwards. Under the assumption of potential flow and integrating
the velocity potential in the vertical direction with appropriated
boundary conditions, the velocity potential of the water surface
can be represented in the form:

Φðx; y; tÞ ¼ϕðx; yÞe� iωt ; ð1Þ
being i the imaginary unit and t the time variable. This potential
has to satisfy the homogeneous MSE, that may be written as:

∇ � ðccg∇ϕÞþω
cg
c
ϕ¼ 0; ð2Þ

where ∇¼ ð∂x; ∂yÞ is the gradient operator, c is the wave velocity
and cg the group velocity. The water depth function hðx; yÞ, wave
number k and angular frequency ω of the waves are related by the
dispersion equation:

ω2 ¼ gk tanhðkhÞ; ð3Þ
being g the gravitational acceleration (g¼ 9:81 m=s2). This means
that, for a fixed frequency and variable bathymetry, the wave
number kðx; yÞ is a function of the local water depth.

The MSE can be simplified introducing the following change of
variable due to Bergmann [45]:

ϕ¼ 1ffiffiffiffiffiffiffi
ccg

p ϕ̂; ð4Þ

a relation that transforms (2) into a Helmholtz equation:

∇2ϕ̂þ k̂
2
ϕ̂ ¼ 0; ð5Þ

with a modified wave number k̂ðx; yÞ given by

k̂
2ðx; yÞ ¼ k2�∇2 ffiffiffiffiffiffiffi

ccg
pffiffiffiffiffiffiffi
ccg

p ; ð6Þ

that is a known function of the wave characteristics and the local
water depth.

Note that this approach is also valid for treating the same
problem in the framework of the MMSE. Simply by modifying the
expression of the wave number (6), including additional effects
associated with higher-order contributions of bottom slope and
curvature, we obtain the MMSE model that extends the applic-
ability of the MSE.

3. Fundamental solution for variable wave number

Based on Green's function of Belibassakis [1], in this section we
develop a fundamental solution of the Helmholtz problem (5) for
the particular case of an unidirectional variable bathymetry like
the one described in Fig. 1. Taking the x-axis in the same direction
than the variation of the water-depth h¼ hðxÞ, a modified wave-

Fig. 1. Wave number variation in the x-direction for a fixed wave frequency due to
a monotonically decreasing water depth profile h(x). Wave number is higher where
water depth is lower as dictated by the dispersion relation.
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