
Three efficient numerical models to analyse the step problem
in shallow water

E.G.A. Costa a,n, J.A.F. Santiago a, L.M.C. Godinho b, L.C. Wrobel c, W.J. Mansur a

a COPPE/UFRJ–Program of Civil Engineering Federal University of Rio de Janeiro, CP 68506, CEP 21945-970 Rio de Janeiro, RJ, Brazil
b CICC–Department of Civil Engineering University of Coimbra, 3030-788 Coimbra, Portugal
c Brunel University London, Institute of Materials and Manufacturing, Uxbridge UB8 3PH, England

a r t i c l e i n f o

Article history:
Received 16 June 2015
Received in revised form
15 September 2015
Accepted 17 September 2015
Available online 22 October 2015

Keywords:
Boundary Element Method
Method of Fundamental Solutions
Green's functions
Ewald's method
Shallow water

a b s t r a c t

In this paper, the problem of acoustic wave propagation in a waveguide of infinite extent is modelled, taking
into account constant depth in each section of the sea. Efficient numerical strategies in the frequency
domain are addressed to investigate two-dimensional acoustic wave propagation in a shallow water con-
figuration, considering a step in the rigid bottom and a flat free surface. The time domain responses are
obtained by means of an inverse Fast Fourier Transform (FFT) of results computed in the frequency domain.
The numerical approaches used here are based on the Boundary Element Method (BEM) and the Method of
Fundamental Solutions (MFS). In the numerical models only the inclined or vertical interface between the
sub-regions of different depth are discretized, as Green's functions that take into account the presence of
free and rigid surfaces are used. These Green's functions are obtained either by eigenfunction expansion or
by Ewald's method. A detailed discussion on the performance of these formulations is carried out, with the
aim of finding an efficient numerical formulation to solve the step problem in shallow water.

& 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Many analytical and numerical methods have been developed
to simulate and analyse underwater acoustic wave propagation.
The book by Jensen et al. [1] discusses in detail the different
methodologies applied to solve the problem of wave propagation
in acoustic environments that have interested many researchers
over past decades. Some of the well-known methods are based on
the acoustic ray theory [2], the normal modes method [3] and the
parabolic equation [4].

A variety of numerical models has also been developed based
on well-established approaches such as the finite difference, finite
element and boundary element methods. Of these, the Boundary
Element Method (BEM) permits an efficient analysis of underwater
acoustic problems with complex shapes and complicated bound-
ary conditions. The BEM has a number of advantages over other
numerical methods [5], such as: it is very well suited for modelling
homogeneous unbounded domains since it automatically satisfies
the Sommerfeld radiation condition and thus involves a more
compact description of the acoustic medium, requiring only the
discretization of the problem boundaries, which considerably
reduces the size of the final linear system of equations. However,
the application of the boundary integral equation is often limited
by the requirement of prior knowledge of the fundamental solu-
tions and the appearance of singular or hyper-singular integrals in
its formulation.

Another difficulty of the BEM in the analysis of acoustic wave
propagation in shallow water occurs when more complex geo-
metries are considered, requiring large discretization schemes.
One way of avoiding this large discretization is by using Green's
functions which directly satisfy the boundary conditions on the
flat free surface and the rigid bottom of the ocean. Such Green's
functions can be constructed using the image-source technique,
but this leads to very slowly convergent series [6,7]. An alternative
to improve the convergence of the series is to build a Green's
function in the form of eigenfunction expansions, the so-called
normal mode solution. This function is also an infinite series but if
only the evanescent modes are considered and there are no pro-
pagating modes, the series becomes rapidly convergent owing to
the exponentially decaying terms for the evanescent modes. In
spite of that, the convergence problems of this series still remain
when the source and the field points are positioned along the
same vertical alignment [8,9].

Linton [10,11] and Papanicolaou [12] discuss mathematical
techniques for accelerating slowly convergent series and show
that Ewald's method is able to provide dramatic improvements in
the speed of convergence, particularly when the source and field
points are located along the same vertical line. This method has
been successfully implemented in the boundary integral equation
formulation by Venakides et al. [13], for the calculation of elec-
tromagnetic scattering of photonic crystals.

Santiago and Wrobel [8,9] discussed the implementation of
Ewald's method in a BEM model for underwater acoustics. They
compared the convergence of Ewald's method with that of
eigenfunction expansions, showing a substantial reduction in the
number of terms necessary for convergence of the series, parti-
cularly when the source and field points are positioned along the
same vertical line. In the present paper, for the first time, Ewald's
method is fully implemented in a BEM underwater acoustics
model in which a vertical interface is discretized, significantly
improving the performance of the method. The integration of the
resulting singular integrals is also discussed in the paper.

In recent years, meshless methods have attracted great interest
of scientists and researchers. The Method of Fundamental Solution
(MFS) is one of these methods and it has been applied with suc-
cess for scattering or radiation problems. Mathematically, the MFS

is a very simple technique and it is also based on the prior
knowledge of fundamental solutions, but not requiring the
numerical and analytical integrations that need to be performed in
the BEM. One disadvantage of the MFS is the determination of the
position of the pseudo-boundary on which the singularities are
placed. Karageorghis [14] has proposed a simple algorithm for
estimating an optimal pseudo-boundary for certain boundary
value problems. Costa et al. [15,16] have shown that, despite its
simplicity, the MFS is a very interesting tool to efficiently predict
wave acoustic propagation in shallow water.

In this paper, the Boundary Element Method and the Method of
Fundamental Solutions are used to analyse, in the frequency
domain, the two-dimensional acoustic wave propagation in a
shallow water configuration, considering a step up on the bottom
of the sea. Time domain signals are computed by means of an
inverse fast Fourier transform of the numerical results in the fre-
quency domain. Appropriate Green's functions are used limiting
the number of discretized surfaces and consequently reducing the
computational cost of the proposed models. These models are
developed by using a sub-region technique, where only the
inclined or vertical interface between the sub-regions of different
depth has to be discretized. These Green's functions are obtained
either by eigenfunction expansion or by Ewald's method. A set of
numerical examples is performed in order to demonstrate the
efficiency of the proposed models in the analysis of acoustic wave
propagation in shallow water problems containing a step on the
seabed. In addition, a detailed discussion on the performance of
these formulations is carried out, with the aim of finding an effi-
cient formulation to solve the acoustic step problem in shallow
water in the frequency domain.

2. Governing equation of the problem

The problem of two-dimensional acoustic wave propagation in
a region Ω of infinite extent in the longitudinal z-direction is
analysed, taking into account the presence of a step up on the
bottom of the sea, as shown in Fig. 1. If the velocity of sound is
constant, the source of acoustic disturbance is time-harmonic and
the medium in the absence of perturbations is quiescent, the
problem is governed by the Helmholtz equation which can be
written as:

∇2pðxÞþk2pðxÞ ¼ � Qδðx � ξsÞ in Ω ð1Þ
where ∇2 ¼ ∂

∂x2þ ∂
∂y2; pðxÞ is the acoustic pressure; Q is the magni-

tude of the acoustic, sound-emitting source ξs located at ðxξs ; yξs Þ;
x is the observation point located at ðx; yÞ, δðx�ξsÞ is the Dirac
delta function, and k¼ 2πf =c is the wave number, with f being the
excitation frequency and c the sound propagation velocity.

The boundary conditions for the above described problem are
given by:

� Dirichlet condition.

p xð Þ ¼ 0 in ΓF ð2Þ

x

y
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Fig. 1. Geometry of the problem.
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