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a b s t r a c t

A stable nodal integration method with strain gradient (SNIM-SG) for curing the temporal instability of
node-based smoothed finite element method (NS-FEM) is proposed for dynamic problems using linear
triangular and tetrahedron element. In each smoothing domain, except for considering the smoothed
strain into the calculation of potential energy functional as NS-FEM, a term related to strain gradient is
taken into account as a stabilization term. The proposed SNIM-SG can achieve appropriate system
stiffness in strain energy between FEM and NS-FEM solutions and obtains quite favorable results in
elastic and dynamic analysis. The accuracy and stability of SNIM-SG solution are studied through detailed
analyzes of benchmark cases and practical engineering problems. In elastic-static analysis, it is found that
SNIM-SG can provide higher accuracy in displacement field than the reference approaches do. In free
vibration analysis, the spurious non-zero energy modes can be eliminated effectively owing to the fact
that SNIM-SG solution strengths the original relatively soft NS-FEM, and SNIM-SG is confirmed to obtain
fairly accurate natural frequency values in various examples. All in all, SNIM-SG cures the flaws of NS-
FEM and enhances the dominant of nodal integration. Thus, the efficacy of the presented formulation in
solving solid mechanics problems is well represented and clarified.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Finite element method (FEM) and mesh-free methods have
beenwidely developed to solve various types of practical problems
of engineering and science.

Both mesh-free [1] and FEM methods can be classified collec-
tively as a Galerkin method [2–4], a Petrov-Galerkin method [5],
and other methods [6]. Gauss integration is commonly used in
Galerkin methods for integration of weak form. Due to the com-
plexity involved in Gauss integration for Galerkin methods,
attempts have been made to develop nodal integration methods
for computation [7–9].

In 1994, an element-free Galerkin method which is applicable to
arbitrary shapes but requires only nodal data is applied to elasticity
and heat conduction problems [7]. The paper shows the method
does not exhibit any volumetric locking, the rate of convergence can
exceed that of finite elements significantly and a high resolution of
localized steep gradients can be achieved. Another advantage of the
method is that it requires no postprocessing for the output of
strains and stresses or other field variables which are derivatives of

the primary-dependent variables since these quantities are already
very smooth. The method offers tremendous potential in industrial
application and in the implementation of adaptivity. However, this
method leads to a numerical instability due to under integration of
the weak form and vanishing derivatives of shape functions at the
nodes, which definitely hinders it's further implementation and
development [8].

A strain smoothing stabilization for nodal integration is pro-
posed [8,10] to eliminate spatial instability in nodal integration.
For convergence, an integration constraint (IC) is introduced as a
necessary condition for a linear exactness in the mesh-free
Galerkin approximation. The gradient matrix of strain smoothing
is shown to satisfy IC using a divergence theorem. Results show
that the accuracy and convergent rates in the mesh-free method
with a direct nodal integration are improved considerably by the
proposed stabilization conforming nodal integration method. And
the proposed method can provide even better accuracy than Gauss
integration for Galerkin mesh-free method. It was further gen-
eralized for accommodating discontinuous displacement func-
tions, leading to the generalized smoothed Galerkin (GS-Galerkin)
weak form [9] that forms the foundation of the node-based
smoothed finite element method (NS-FEM) [11,12] and a class of
numerical methods, such as the node-based smoothed point
interpolation method (NS-PIM) [13], smoothed finite element
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method (SFEM) [14–20], edge-based smoothed finite element
method (ES-FEM) [14] and so on. These solutions based on strain
smoothing have been extended or developed in recent years, and
have been successfully used to analyze linear and nonlinear solids
[21–25], linear and nonlinear plates and shells [26], free and
forced vibration problems [27,28], singular field problems [29–32],
piezoelectric structures [33], composite plates [34,35], functionally
graded material plates [36,37] and so on. The NS-FEM can be
viewed as a variant model of FEM. It has very attractive properties

that are complementary to the FEM and can be applied easily to
tetrahedral or triangular elements without any modification in the
formulation and procedures [9]. NS-FEM won the favor recently
for its prominent inherent properties [9]. Such as its insensitive to
element distortion, and it is well immune from the volumetric
locking and so on. And also, the computation time and computa-
tion efficiency of NS-FEM have been studied in previous works
using bandwidth solver for linear elasto-statics [38]. Researchers
found the computational efficiency of NS-FEM was three times
lower than that of FEM-T3 in terms of displacement norm, 20
times higher in strain energy norm [39].

In smoothed FEM models, two types of instability, spatial sta-
bility and temporal stability, have been found [39], which is the
major difficulty for node-based solutions. A spatially stable model
always produces a unique and convergent solution for static pro-
blems when functions are bounded. However, this does not
guarantee a stable solution for dynamic problems [40]. The
"temporal instability" is defined as models that have spurious non-
zero eigen modes. Such models are spatially stable, and will not
have zero energy modes. However, when they are excited at
(strictly non-zero) higher energy level, it can behave un-physically
[39]. The NS-FEM-T3 has proven spatially stable [38], but found
temporally instable. Even when a unconditionally stable time-
integration scheme is used to solve transient dynamic problems
[39], un-physical numerical responses can appear.

Beissel and Belytschko [41] proposed a stabilized nodal inte-
gration procedure by adding a residual of the equilibrium equation
to the potential energy functional in an element-free Galerkin
(EFG) framework. Researchers [39] further studied this solution
into NS-FEM situation, and found that it could diminish spurious
near-singular modes with a proper α value. However, its main
defects are [8]: (1) for problems that do not contain unstable
modes in their original solution, the addition of stabilization

Fig. 2. The integration domain and integration points for FEM and SNIM-SG for 2D and 3D problems. (a) FEM integration for 2D, (b) SNIM-SG integration for 2D, (c) FEM
integration for 3D, and (d) SNIM-SG integration for 3D.

Fig. 1. The schematic of a node-based smoothing domain for node k. (a) 2D
smoothing domain, and (b) 3D smoothing domain.
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