
A BIEM using the Trefftz test functions for solving the inverse Cauchy
and source recovery problems

Chein-Shan Liu a,b,n

a International Center for Simulation Software in Engineering and Sciences, College of Mechanics and Materials, Hohai University,
Nanjing, Jiangsu 210098, China
b Department of Civil Engineering, National Taiwan University, Taipei 10617, Taiwan

a r t i c l e i n f o

Article history:
Received 2 August 2015
Received in revised form
16 October 2015
Accepted 18 October 2015
Available online 6 November 2015

Keywords:
Laplace equation
Poisson equation
Inverse Cauchy problem
Inverse source problem
Boundary integral equation method
Trefftz test functions

a b s t r a c t

In this paper we develop a global domain/boundary integral equation method for the Laplace and
Poisson equations, which is based on the Green's second identity. A derived global relation links the
source term to the Dirichlet and Neumann boundary conditions into a single integral equation in terms of
the Trefftz test functions. By suitably choosing the Trefftz test functions, which are not the usual Green
functions as that used in the conventional boundary integral method, the present boundary integral
equation method (BIEM) can find the unknown boundary conditions for the inverse Cauchy problems
very well. Even under a large noise to 10% and the data over-specified in a 25% portion of the whole
boundary, the recovered result is still accurate. The inverse source problems of the Poisson equation are
resolved numerically by using the BIEM which is stable and effective for strongly ill-posed case with a
large noise being imposed on the supplementary data.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse Cauchy problem is to solve the boundary value
problem of elliptic type partial differential equations given by
some over-specified Cauchy data on a partial portion of the
boundary, which is proved to have a unique solution if the solution
exists. However, the problem of numerical instability causes
the inverse of the original operator not available. For example, the
exact solution

uðx; yÞ ¼ n�2 sin ðnxÞ sinhðnyÞ
does not become small for any nonzero y, even the initial condi-
tion n�1 sin ðnxÞ can be arbitrarily small by increasing n. In the
Hardmard sense, the solution does not depend continuously on
the initial data. To treat this kind ill-posed problem, many tech-
niques were proposed; among them the most famous one is the
Tikhonov's regularization technique, which transforms the original
problem into a constrained minimization problem.

The use of electrostatic image in the non-destructive testing of
metallic plates leads to an inverse Cauchy problem for the Laplace
equation in two-dimension. In order to detect the unknown shape
of the inclusion within a conducting metal, the over-determined
Cauchy data, for example the voltage and current, are imposed on

the accessible exterior boundary [1–3]. This amounts to solving an
inverse Cauchy problem from available data on partial boundary.
The Cauchy problem is difficult to be solved both numerically and
analytically, since its solution does not depend continuously on the
given data as just mentioned.

In the past decades there are many numerical methods pro-
posed to solve the Cauchy problems [4–10], to name a few. Among
the many numerical methods, the schemes based on iteration have
been developed by Jourhmane and Nachaoui [11,12], Essaouini
et al. [13], Nachaoui [14], and Jourhmane et al. [15]. Liu [16] has
applied a modified collocation Trefftz method in the inverse
Cauchy problem in a circular domain. In [17,18], a similar method
has been named the Fourier regularization method. Liu [19] has
developed a modified Trefftz method by a simple collocation
technique to treat the inverse Cauchy problem of Laplace equation
in arbitrary plane domain. Liu and Kuo [20], Liu et al. [21] and
Liu and Chang [22] have proposed using the spring-damping
regularization techniques to treat the inverse Cauchy problems.
Then Liu and Atluri [23] and Liu [24] used a better post-
conditioning collocation Trefftz method to solve the inverse Cau-
chy problems.

In this work we also ponder the inverse source problem of the
Poisson equation, which arises in many branches of sciences and
engineering, e.g. crack identification, electromagnetic theory, and
geophysical prospecting. There are some papers for identifying the
unknown source in the Poisson equation by utilizing the regular-
ization methods. For example, Ohe and Ohnaka [25] identified the

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2015.10.004
0955-7997/& 2015 Elsevier Ltd. All rights reserved.

n Correspondence address: Department of Civil Engineering, National Taiwan
University, Taipei 10617, Taiwan.

E-mail address: liucs@ntu.edu.tw

Engineering Analysis with Boundary Elements 62 (2016) 177–185

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2015.10.004
http://dx.doi.org/10.1016/j.enganabound.2015.10.004
http://dx.doi.org/10.1016/j.enganabound.2015.10.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.10.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.10.004&domain=pdf
mailto:liucs@ntu.edu.tw
http://dx.doi.org/10.1016/j.enganabound.2015.10.004


unknown point source with the logarithmic potential; Nara and
Ando [26] identified the unknown point source using the projec-
tive method; Hon et al. [27] identified the unknown point source
with Green's function; Farcas et al. [28] identified the unknown
source using the dual reciprocity boundary element method; Jin
and Marin [29] identified the unknown source of one variable
using the method of fundamental solutions (MFS) Yang and Fu
[30,31] used the truncation method and modified regularization
method for identifying an unknown source of one variable in the
Poisson equation.

The remaining portion of this paper is arranged as follows. In
Section 2 we introduce a global domain/boundary integral method
based on the Green's theorem and the adjoint operator, which
results in a reciprocity gap functional to extract unknown
boundary data from over-specified measurements. In Section 3 we
choose a suitable set of the Trefftz test functions to derive a linear
system for the inverse Cauchy problem in a rectangle, whose
numerical examples are given in Section 4. In Section 5 we derive
a linear system for the inverse Cauchy problem in a simply-
connected domain and give numerical tests. The inverse source
problem of the Poisson equation is addressed in Section 6, where
some numerical examples are given, and finally the conclusions
are drawn in Section 7.

2. Boundary integral equation method

2.1. The inverse Cauchy problem in a rectangle

We consider an inverse Cauchy problem given as follows:

∂2u
∂x2

þ∂2u
∂y2

¼ 0; 0oxoa; 0oyob; ð1Þ

uðx; bÞ ¼ h1ðxÞ; 0rxra; ð2Þ

uyðx; bÞ ¼ h2ðxÞ; 0rxra; ð3Þ

uð0; yÞ ¼ u0ðyÞ; uða; yÞ ¼ uaðyÞ; 0ryrb; ð4Þ
where h1ðxÞ, u0ðyÞ and ua(y) are given functions, h2ðxÞ is an over-
specified function, and the subscript y denotes the partial differ-
ential with respect to y.

In this inverse Cauchy problem we suppose that the Neumann
datum h2ðxÞ in Eq. (3) is over-specified, such that we can deter-
mine the unknown functions f(x) and g(x) on the bottom:

uðx;0Þ ¼ f ðxÞ; uyðx;0Þ ¼ gðxÞ; 0rxra: ð5Þ

2.2. Green's second identity

Before embarking the derivation of Green's second identity for
Laplace equation, we introduce the Laplacian operator:

Δuðx; yÞ ¼ uxxþuyy: ð6Þ

Lemma 1 (Green's Theorem in the plane). Let Ω be a bounded
region in the plane (x,y) with a counter-clockwise contour Γ consists
of finitely many smooth curves. Let F1ðx; yÞ and F2ðx; yÞ be functions
that are differentiable in Ω and continuous on Ω. ThenZ Z

Ω

∂F2
∂x

�∂F1
∂y

� �
dx dy¼

I
Γ
ðF1 dxþF2 dyÞ: ð7Þ

Inserting

F1 ¼ vuy�uvy; F2 ¼ uvx�vux; ð8Þ

and by using Lemma 1 we can prove Green's second identity for the
Laplacian operator.

Theorem 1 (Green's second identity). Let Ω be a bounded region in
the plane (x,y) with a counter-clockwise contour Γ consists of finitely
many smooth curves. Let uðx; yÞ and vðx; yÞ be functions that are twice
differentiable in Ω and continuous on Ω. ThenZ Z

Ω
ðuΔv�vΔuÞ dσ ¼

I
Γ
ðuvn�vunÞ ds; ð9Þ

where dσ ¼ dx dy is an area element in the plane and the subscript n
denotes the normal derivative with respect to n¼ ðdy=ds; �dx=dsÞ.

Proof. The proof of Green's second identity is available in text
books, and we omit it.□

Theorem 2 (Global relation). For the inverse Cauchy problem in Eqs.
(1)–(5), f(x) and g(x) satisfy the following global relation:I
Γ
ðuvn�vunÞ ds¼

Z a

0
½gðxÞvðx;0Þ� f ðxÞvyðx;0Þ� dx

þ
Z b

0
½uaðyÞvxða; yÞ�vða; yÞuxða; yÞ� dy

�
Z a

0
½h2ðxÞvðx; bÞ�h1ðxÞvyðx; bÞ� dx

�
Z b

0
½u0ðyÞvxð0; yÞ�vð0; yÞuxð0; yÞ� dy¼ 0 ð10Þ

for any function v with Δv¼ 0.

Proof. Inserting Δu¼ 0 and Δv¼ 0 into Eq. (9), integrating along
the contour Γ ¼Γ1 [ Γ2 [ Γ3 [ Γ4 ¼ f0rxra; y¼ 0g [ fx¼ a;
0ryrbg [ f0rxra; y¼ bg [ fx¼ 0;0ryrbg, and inserting the
corresponding conditions in Eqs. (2)–(4) we can prove this
theorem.□

3. The numerical algorithm of boundary integral equation
method

In Theorem 2 we can choose a simple function vðx; yÞ, such that
Eq. (10) can be easily used to solve f(x) and g(x). For this purpose
we can take

vðx; yÞ ¼ sin
kπx
a

exp
�kπy
a

� �
; ð11Þ

which is a solution of the Laplace equation with kAN being a
positive integer. Inserting

vð0; yÞ ¼ 0; vða; yÞ ¼ 0; vðx;0Þ ¼ sin
kπx
a

;

vyðx;0Þ ¼ �kπ
a

sin
kπx
a

ð12Þ

into Eq. (10) we can derive
Z a

0

kπ
a
f ðxÞþgðxÞ

� �
sin

kπx
a

dx¼
Z b

0
½u0ðyÞvxð0; yÞ�uaðyÞvxða; yÞ� dy

þ
Z a

0
½h2ðxÞvðx; bÞ

�h1ðxÞvyðx; bÞ� dx≕ek; ð13Þ
where ek is a different constant for different k, and

vðx;bÞ ¼ sin
kπx
a

exp
�kπb
a

� �
;

vxð0; yÞ ¼
kπ
a

exp
�kπy
a

� �
;

vxða; yÞ ¼
kπ
a

cos ðkπÞ exp �kπy
a

� �
;

C.-S. Liu / Engineering Analysis with Boundary Elements 62 (2016) 177–185178



Download English Version:

https://daneshyari.com/en/article/512259

Download Persian Version:

https://daneshyari.com/article/512259

Daneshyari.com

https://daneshyari.com/en/article/512259
https://daneshyari.com/article/512259
https://daneshyari.com

