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a b s t r a c t

In this paper, we propose a meshless scheme based on compactly supported radial basis functions (CS-
RBFs) for solving the Cauchy problem of Poisson's equation and the inverse heat conduction problems in
2D. By assuming the unknown boundary condition to be a polynomial function, the inverse problems
can be solved using a procedure similar to the process for solving forward problems. We employ
Tikhonov regularization technique under L-curve regularization parameter to obtain a stable numerical
solution. Numerical results verify the effectiveness and stability of this method.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Inverse problems arise in scientific, engineering and even medical
fields such as non-destructive testing in stress and strain analysis,
cardiography, and the heat conduction problem. As we know, these
kinds of problems are ill-posed, which means the solutions do not
depend continuously on the boundary conditions. Since any small
errors caused by the measurement of input data on the boundary or
interior of the domain can result in highly amplified errors in the
numerical solutions, traditional methods for well-posed forward
problems are not suitable for solving inverse problems. Therefore,
developments of effective and stable numerical algorithms are
essential.

During the last few decades, many numerical methods have
been presented for solving inverse problems [1–11]. Among these
papers, most of the numerical algorithms are based on the method
of fundamental solution (MFS) [1–5,7], the finite difference
method (FDM) [6,8], and the finite element method (FEM) [9–
11]. However, every method has its own limitations. For FDM and
FEM, the cost of generating meshes for three dimensional pro-
blems is quite high. Furthermore, the adaptability of FDM to
complex domains is poor. Although FEM has better versatility
and adaptability to irregular domains, the computational cost in
time and space is extremely high for solving large-scale inverse

problems. MFS was first applied to solve elliptic boundary value
problems by Fairweather and Karageorghis [12]. The pure MFS is
limited for solving homogeneous equations when the fundamental
solutions are available. Although MFS can be used to solve
inhomogeneous problems by combining with the dual reciprocity
method (DRM) [13,14], the severe ill-conditioning of the coeffi-
cient matrix and the uncertainty for setting the fictitious boundary
hinder its application in practical problems.

The meshless methods based on the radial basis functions (RBFs)
are of competitive edge, due to their simplicity in selecting interpola-
tion points and high adaptability to domain shape and equation type.
Hon andWu [15] gave the first approach in applying RBFs to solve the
Cauchy problem for Laplace equations. Since then, some papers in this
area have been published [16–19]. In these papers, the main idea for
solving inverse problems is to approximate the solution by a linear
combination of RBFs and directly substitute the approximated solution
into the governing equation, the boundary conditions, and the over-
specified conditions. As we know, the main difficulty in designing an
algorithm stems from the ill-posedness of the inverse problem and the
ill-conditioning of the coefficient matrix. Furthermore, the condition
number of the coefficient matrix increases dramatically with an
increase in the number of interpolation points. Therefore, for large-
scale problems, where a large number of interpolation nodes are
necessary, the coefficient matrix based on the commonly used globally
defined RBFs can be dense and highly ill-conditioned. For this reason,
compactly supported RBFs (CS-RBFs) which are positive-definite and
can result in a sparse matrix are suitable for solving large-scale
problems. CS-RBFs have been extensively used for solving forward
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problems. CS-RBFs have been used in the dual reciprocity boundary
element method (DRBEM) for solving Poisson's equation [20–22],
Stokes Flow problems [23], in MPS-MFS for solving 3D Hemholtz-type
equations [24], and in the collocation method for solving shallow
water equations [25]. However, to the best of the authors' knowledge,
CS-RBFs have not been used for solving inverse problems yet.

In this paper we propose a stable local meshless numerical
method based on CS-RBFs for solving 2D inverse problems with a
small number of sensors installed inside the domain. We deter-
mine the Dirichlet boundary data on an unreachable boundary.
Unlike other direct methods [15–19], we design a novel scheme by
first assuming the unknown boundary condition to be a poly-
nomial function and then creating equations based on CS-RBFs in
an ingenious process. It is worth mentioning that the size and the
number of non-zero elements of the coefficient matrix in the
proposed method are much smaller than the traditional direct
method using CS-RBFs. Thus, the condition number of the coeffi-
cient matrix is significantly smaller.

The paper is organized as follows. In Section 2, we briefly
review CS-RBFs. In Section 3, we propose the scheme on how to
solve inverse problem for Poisson's equation using CS-RBFs. In
Section 4, we propose a 2D IHCP algorithm by following the
method presented in Section 3 to further verify the stability of the
approach. Furthermore, the Tikhonov regularization method with
L-curve scheme is applied to obtain a stable solution. In Section 5,
the efficiency and stability of the proposed method are tested in
comparison with the conventional direct method used in most
papers based on the same CS-RBF.

2. CS-RBFs

Radial basis functions are simple and effective tools in approx-
imating multivariate functions. Let E¼ fejglj ¼ 1 be a set of pairwise
distinct points in a domainΩDR2 with associate values ff ðejÞglj ¼ 1.
For the commonly used global RBFs φ such as Guassians and
multiquadrics, the interpolation matrix AE ¼ φ Jek�ej J

� �� �
1r j;kr l

is non-sparse. To obtain a more accurate solution for inverse
problems, we want to use as many points as possible when
conditions allow. However, for a large number of interpolation
points, the condition number of the coefficient matrix based on
the global basis function can be quite large, leading to a loss of
stability and numerical accuracy. Furthermore, the cost of matrix
inverting and storing AE could be enormous. To overcome all these
difficulties, compactly supported RBFs (CS-RBFs) have been intro-
duced as local basis functions. The construction of the CS-RBFs was
first established by Wu [26], followed by Wendland [27], and later
by Buhmann [28]. In this paper we will focus on the CS-RBFs
constructed by Wendland [27]. These functions are piecewise
polynomial with minimal degree in terms of the given order of
smoothness. The interpolation matrix AE based on CS-RBF is
sparse and positive definite. A list of 2D CS-RBFs is given in
Table 1. In this table, the cut-off function ðrÞþ is defined to be r
if rZ0 and to be zero elsewhere.

In Table 1, the radius of the support of the function has been
normalized to 1. In the real application, we can re-scale the
function in this table with the support of radius α using φðr=αÞ
for α40: The sparseness of the interpolation matrix AE can be
suitably adjusted by choosing the scaling factor α: If α is too small,

the reproduction quality is poor, while if α is too large, the matrix
AE is no longer sparse and it will lost its attractiveness in real
applications. Hence, a reasonable choice of the scaling factor α is
crucial to compromise between the stability and quality of the
approximation.

3. The local meshless method for a stationary inverse heat
conduction equation

First, consider the following inverse problem for Poisson's
equation:

ΔuðxÞ ¼ f ðxÞ; xAΩ; ð1Þ

uðxÞ ¼ gðxÞ; xA∂Ω1; ð2Þ

uðxÞ ¼ hðxÞ; xA∂Ω2; ð3Þ
where ΩDR2 is a bounded domain with boundary ∂Ω, and
∂Ω¼ ∂Ω1 [ ∂Ω2, ∂Ω1 \ ∂Ω2 ¼∅ and ∂Ω2a∅. Δ is the Laplacian,
f and g are given functions, and h is unknown. Note that x¼ ðx; yÞ.
In addition, the over-specified condition is given as follows:

uðxn

i Þ ¼ qðxn

i Þ; xn

i AΩ; i¼ 1;2;…;nq; ð4Þ
where xn

i , i¼ 1;2;…;nq, are certain interior points at which
sensors are fixed in the reachable part of the domain. Therefore,
the measured values qðxn

i Þ ði¼ 1;2;…;nqÞ are known.
In the inverse problem described above, u at any points on

boundary ∂Ω2 and in Ω should be determined. In Section 3, the
main idea and process of applying a local meshless method based
on CS-RBF to solve this kind of problem will be explained.

Here, we use a polynomial of degree d to approximate the
Dirichlet boundary condition on ∂Ω2, which means

hðxÞC ĥðxÞ ¼ b0þb1xþb2yþb3x2þb4xyþb5y2þ⋯þbdðdþ3Þ=2y
d:

ð5Þ
The above polynomial can be represented in vector form:

ĥðxÞ ¼ pðxÞb; xA∂Ω2 ð6Þ
where

pðxÞ ¼ ð1 x y x2 xy y2 ⋯ ydÞ
b¼ b0 b1 ⋯ bdðdþ3Þ=2

� �T ð7Þ
In order to solve problems (1)–(4), we tentatively assume that

hðxÞ is known as shown in (6), which means b in (6) is given. Then
problems (1)–(4) can be taken as the well-posed forward problem.
We apply Kansa's method [29] based on compactly supported
RBFs to solve this hypothetical forward problem. We proceed in
the following way.

Let xj
� �n

j ¼ 1 be a set of uniformly distributed pairwise distinct
interpolation points in Ω [ ∂Ω. Note that xj

� �ni
j ¼ 1DΩ, xj

� �niþnb1
j ¼ niþ1

D∂Ω1, and xj
� �n

j ¼ niþnb1þ1D∂Ω2, and n¼ niþnb1þnb2. J � J
denotes the Euclidean norm. Then we seek to approximate u by
û as follows:

uðxÞC ûðxÞ ¼ ∑
n

i ¼ 1
ajφαðrjÞ; xAΩ [ ∂Ω; ð8Þ

where rj ¼ Jx�xj J , and φαðrjÞ ¼φðrj=αÞ is a CS-RBF with scaling
factor α.

According to Kansa's method [29], the coefficient aj
� �n

j ¼ 1 can
be obtained by the collocation approach

∑
n

j ¼ 1
ajΔφα Jxi�xj J

� �¼ f ðxiÞ; 1r irni; ð9Þ

∑
n

j ¼ 1
ajφα Jxi�xj J

� �¼ gðxiÞ; niþ1r irniþnb1; ð10Þ

Table 1
Wendland's CS-RBFs in 2D.

ð1�rÞ2þ AC0

ð1�rÞ4þ ð4rþ1ÞAC2

ð1�rÞ6þ ð35r2þ18rþ3ÞAC4
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