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a b s t r a c t

The purpose of this paper is to demonstrate that the localized method of approximated particular
solutions (LMAPS) is a stable, accurate tool for simulating two-dimensional incompressible viscous flow
fields with Chorin's projection method. Totally there are two numerical experiments conducted: the
two-dimensional lid-driven cavity flow problem, and the two-dimensional backward facing step
problem. Throughout this study, the LMAPS has been tested by non-uniform point distribution,
extremely narrow rectangular domain, internal flow, velocity or pressure driven flow and high velocity
or pressure gradient, etc. All results are similar to results of finite element method (FEM) or other
literature, and it is concluded that the LMAPS has high potential to be applied to more complicated
engineering applications.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The incompressible viscous flow is known for its applications in
fields of hydraulics, liquid metal casting, blood circulation, etc.
Incompressible viscous flow is used to describe flows with constant
density within a fluid parcel. This does not imply, however, that the
fluid itself must be incompressible; limited compressibility is accep-
table for some compressible flow problems with suitable given
conditions. The main advantage of assuming a flow to be incom-
pressible is that it simplifies the equations that describe flowmotion,
which is known as the incompressible Navier–Stokes equations.

There are various algorithms developed to approximate the
incompressible Navier–Stokes equations, the algorithms can be
roughly categorized into coupled or decoupled schemes, where
the decoupled methods make the equations for numerical imple-
mentation independent to each other by rearranging the system.
The decoupled methods, more commonly used in computational
fluid dynamics (CFD), includes methods such as Chorin's projection
method [1,2], or the semi-implicit method for pressure-linked
equations (SIMPLE) [3,4]. Another way to categorize the algorithms
is to determine whether the algorithm is based on analyzing the

primitive variables, velocity component and pressure, or not. Both
of the earlier mentioned Chorin's project method or SIMPLE
method used primitive variable formulation. For algorithms using
vorticity or stream functions other than primitive variables, there
are velocity–vorticity formulation [5,6], vorticity–stream function
formulation [7], and others. The well-known Chorin's projection
method is chosen to approximate the solutions of the incompres-
sible Navier–Stokes equations by the LMAPS in this study.

The projection method solves the incompressible Navier–Stokes
equations in three stages. The first stage is to split the operators into
Burgers' equations to obtain the intermediate velocity numerically; the
second stage is to take divergence into the split equations with pressure
term to obtain the pressure Poisson's equation, and the third stage is to
execute velocity correction with intermediate velocity and pressure
obtained in the two former stages.

In CFD, such tasks are mostly executed via mesh-dependent
numerical methods, including the finite difference method (FDM) [8],
FEM [9], the finite volumemethod (FVM) [10], or the boundary element
method (BEM) [11]. These methods have already been commonly used
in scientific researches and engineering applications. However, the
mesh-dependent numerical methods require mesh generation or
numerical quadrature, which may be difficult to process during the
numerical implementations, especially for multi-dimensional problems.
In order to avoid mesh generation and numerical quadrature, various
meshless numerical methods, such as the smoothed particle hydro-
dynamics (SPH) method [12], the multiquadrics (MQ) collocation
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method [13], the method of fundamental solutions (MFS) [14,15], the
boundary knot method [16], the boundary particle method [17], the
singular boundary method [18], the finite point method (FPM) [19], the
local radial basis function-based differential quadrature method (LRBF-
DQ) [20–22], the method of approximated particular solutions (MAPS)
[23–25] and the meshless local Petrov–Galerkin method (MLPG)
[26,27], have been developed.

Among the meshless methods, some, like the MQ or the MAPS, are
categorized as the global-type meshless methods. Global-type meth-
ods require interpolation with all collocation points within the global
domain, often causing the resultant interpolationmatrix dense and ill-
conditioning, which makes the calculation inefficient and unstable. In
order to avert the above setbacks when dealing with large-scale
computation problems, as recent literature shows, intense researches
have been focused on various localization techniques for the global-
type meshless methods [28,29].

The localization technique allows the numerical method to
approximate the solution of given partial differential equations
(PDEs) with less local influence points. By reformulating the dense
resultant interpolation matrix into a sparser matrix, it reduces the
risk of ill-conditioning and requires less computational time and
memory loading. The localization techniques can be applied to the
MQ and the MAPS, developing them into the localized multi-quadric
method (LMQ) [28], the local radial basis functions differential
quadrature method (LRBFDQ) [20], and the LMAPS [29].

The major concept of the localization for the MAPS was intro-
duced by Yao et al. [29]. Instead of considering all points within the
global domain, researchers choose a limited number of weighting
points within a local influence area. Thus we can reformulate the
algorithm to obtain the solutions directly instead of obtaining the
weighting coefficients of the MAPS which are more physical oriented
than the global formulation. For the LMAPS, this breakthrough
maintains the advantage of meshless methods and improves from
the MAPS to be more physical, robust and efficient.

The LMAPS has already been verified for solving many PDEs
[30–32], it can be reasonably expected that the projection method
should also be processed well by the LMAPS. The purpose of this
paper is to validate the LMAPS as a stable, accurate tool for
simulating the two-dimensional incompressible viscous flow field
with the projection method. Two numerical experiments are
conducted: the two-dimensional lid-driven cavity flow problem,
and the two-dimensional backward facing step problem. The results
in this paper are compared well with the results from FEM or
literature data, which verifies the capability of the LMAPS.

The details of the LMAPS and its formulation of Chorin's
projection method are explained in the following sections.

2. Governing equations and essential conditions

2.1. Governing equations

The computational domain Ω includes the boundary ∂Ω. The
dimensionless Navier–Stokes equations for the viscous incompressible

flow field are listed as follows:
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Here u
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vector of space; t is time; p is pressure; and Re is the Reynolds
number.

2.2. Initial conditions and boundary conditions

In order to obtain unique solutions for the governing equations,
the essential conditions such as the initial conditions and bound-
ary conditions are required.

The initial condition is given in the general form as
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Dirichlet type and Neumann type boundary conditions are
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Here σ
,ðx,Þ ¼ σ1; σ2ð Þ is the given initial condition; β
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is the given boundary condition; x
,
bAx

, \ ∂Ω is the space vector of
boundary points; and n is the unit outward normal direction of
boundary.

3. Numerical methods

3.1. The projection method

Developed by Chorin in 1968 [1], the projection method is applied
to approximate the solution of the incompressible Navier–Stokes
equations. The method is based on splitting the operators of the
momentum equations into three sequential stages to be processed
separately. The derivation begins with the discretization of the time-
domain by using the explicit Euler scheme and introduces the
intermediate velocity.
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where u
,n

depicts the intermediate velocity, and all superscripts denote
the time steps.

Next, by operator splitting, the Navier–Stokes equations become
the Burgers' equations which, provides the explicit Euler scheme to
obtain the intermediate velocity u

,n

, namely the first stage for the
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Subscripts

d dth dimension of space
i ith point of global domain
j jth point of global domain
k kth point of local domain
l lth point on a certain direction
m mth point of local domain
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