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a b s t r a c t

The method of approximate particular solutions (MAPS) is an alternative radial basis function (RBF)
meshless method, which is defined in terms of a linear combination of the particular solutions of the
inhomogeneous governing equations with traditional RBFs as the source term. In this paper, we apply
the MAPS to both constant- and variable-order time fractional diffusion models. In the discretization
formulation, a finite difference scheme and the MAPS are used respectively to discretize time fractional
derivative and spatial derivative terms. Numerical investigation examples show the present meshless
scheme has highly accuracy and computationally efficiency for various fractional diffusion models.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In recent decades, anomalous diffusion phenomena are exten-
sively observed in a wide range of engineering and physics fields
[1–4], such as contaminant transport, seepage, magnetic plasma,
dissipation and turbulence. To describe anomalous diffusion phenom-
ena, constant-order fractional diffusion equations are considered as
recent alternative models and have received fantastic success [5–7].
However, various recent experimental results [8,9] show that
constant-order fractional diffusion equations cannot fully capture
some more complicated diffusion processes, whose diffusion beha-
viors depend on the time evolution, spatial variation or even
concentration variation. To deal with these issues, variable-order
fractional diffusion equations [10,11] have been introduced, in which
the variable-order time fractional operator can be time-dependent,
spatial-dependent, and/or concentration-dependent.

Nowadays, finite difference methods (FDMs) are popular and
dominant numerical techniques for temporal and spatial discretiza-
tion of constant-order [12–16] and variable-order [17–20] fractional
diffusion equations. Their convergence, accuracy, and stability have
extensively been discussed in the literatures [21–24].

For the numerical simulations of constant-order fractional diffusion
equations, with traditional FDMs for temporal discretization, several
numerical methods have been introduced to spatial discretization of

fractional derivative equations, such as the Fourier method [25],
spectral method [26], finite element method [27–29], boundary
element method [30], and radial basis function meshless collocation
method [31–33]. In comparison with traditional FDMs for spatial
discretization, these methods can reduce, to a certain extent, comput-
ing costs for large computational domain problems. In this work, we
shall extend the idea to mitigate the computing costs in the numerical
simulation of variable-order fractional diffusion equations.

We will focus on constant- and variable-order time fractional
diffusion equations, which only have fractional derivative in time and
integer differential operator in space. We employ a finite difference
method for temporal discretization and introduce an alternative
radial basis function (RBF) meshless method, the method of approx-
imate particular solutions (MAPS) [34–37], for spatial discretization.
Chen et al. [38] first proposed the method of approximate particular
solutions (MAPS) to solving partial differential equations. Then the
MAPS has been successfully applied to various physical and engineer-
ing problems, such as anisotropic problems [39], nonlinear Poisson
problems [40], wave problems [41], elasticity problems [42], Stokes
flow problems [43], and convection-diffusion problems [44]. In
comparison with the famous RBF method, also known as the Kansa
method, the MAPS uses a newly derived RBF as interpolation basis
function, which include some information from the considered
governing equation operator. And some numerical experiments
[45–47] demonstrate that the MAPS outperforms the Kansa method
in terms of both the stability and accuracy, particularly in the
evaluation of partial derivatives.

This paper first applies the method of approximate particular
solutions (MAPS), to 2D constant- and variable-order fractional diffu-
sion problems. A brief outline of the paper is as follows. Section 2
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describes the present computational formulations for fractional diffu-
sion equations. In Section 3, the efficiency and accuracy of the present
approach are examined with some benchmark examples. Finally,
Section 4 concludes this paper with some remarks.

2. Methodology

2.1. Time fractional diffusion model

Without loss of generality, we consider the following variable-
order time fractional diffusion equations in a bounded domain Ω
with piecewise smooth boundary ∂Ω¼ΓDþΓN (ΓD \ ΓN ¼∅)

∂α tð Þu x; tð Þ
∂tα tð Þ ¼ DΔþ v!U∇�λ

� �
u x; tð ÞþQ x; tð Þ;

0oα tð Þo1; xAΩ; tA 0; Tð Þ; ð1Þ

with boundary conditions

u x; tð Þ ¼ g1 x; tð Þ; xAΓD; tA 0; Tð Þ; ð2aÞ

∂u x; tð Þ
∂n

¼ g2 x; tð Þ; xAΓN ; tA 0; Tð Þ; ð2bÞ

and initial condition

u x;0ð Þ ¼ u0 xð Þ; xAΩ; ð3Þ

where Q x; tð Þ, g1 x; tð Þ, g2 x; tð Þ and u0 xð Þ are known functions; D the
diffusion coefficient, λ the reaction coefficient, v! the velocity
vector, n the unit outward normal, T the total time to be considered,
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Fig. 1. Schematic configuration of uniform node distribution on a square domain
(boundary nodes ‘o’ and inner nodes ‘n’).

Fig. 2. Convergence rate (RMSE) of the present method with the derived RBF
formulation (11(a)) by using different time steps (dt¼0.02, 0.01, 0.005, 0.002) in
Example 1. (a) Full Dirichlet boundary conditions and (b) mixed boundary
conditions.

Fig. 3. Convergence rate (RMSEx) of the present method with the derived RBF
formulation (11(a)) by using different time steps (dt¼0.02, 0.01, 0.005, 0.002) in
Example 1. (a) Full Dirichlet boundary conditions and (b) mixed boundary
conditions.
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