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a b s t r a c t

The method of fundamental solutions is investigated in the case when the source points are located
along the boundary of the domain of the original problem and coincide with the collocation points. The
appearing singularities are eliminated by several techniques: by using approximate but continuous
fundamental solutions (regularization) and via auxiliary subproblems to avoid the stronger singularities
that appear in the normal derivatives of the fundamental solution (desingularization). Both monopole
and dipole formulations are investigated. A special iterative solution algorithm is presented, which
converts the original (mixed) problem to a sequence of pure Dirichlet and pure Neumann subproblems.
The pure subproblems can be handled efficiently by using conjugate gradients. The efficiency is
significantly increased by embedding the resulting method in a natural multi-level context. At the same
time, the problem of the use of highly ill-conditioned matrices is also avoided.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Elliptic partial differential equations play an essential role in a
lot of fields of application. Modelling stationary phenomena such
as diffusion in fluids or in gases, heat transfer in machines e.g. in
parts of traditional or hybrid cars, seepage through porous media
lead to solving elliptic problems. The usual implicit time discreti-
zation techniques of time-dependent problems result in elliptic
problems as well, at every time step.

To handle elliptic problems in a meshless way, the popular
Boundary Element Method is not suitable, since it requires a
boundary mesh structure. The strength of the meshless methods is
to circumvent the generation of both domain and boundary mesh. So
far, a number of boundary meshless methods have been developed e.
g. the boundary knot method [3,4] which uses nonsingular general
solutions, or the method of fundamental solutions (MFS, see e.g. [1]),
which is based on the fundamental solution of the applied partial
differential operator, i.e. on solutions with singularities. In this paper,
we restrict ourselves to the MFS applied to homogeneous problem.
(For non-homogeneous problems, the approach can be combined
with the well-known principle of the Method of Particular Solutions).

Consider a second-order elliptic homogeneous linear partial
differential equation:

Lu¼ 0 in Ω ð1Þ

defined in a sufficiently smooth domain Ω supplied with mixed
boundary conditions:

ujΓD
¼ u0;

∂u
∂n

����
ΓN

¼ v0; ð2Þ

where Γ≔∂Ω denotes the boundary of Ω, which has a disjoint
decomposition into a Dirichlet part ΓD and a Neumann part ΓN .

In its traditional form, the MFS produces an approximate
solution of the problem (1) and (2) in the following form:

uNðxÞ ¼ ∑
N

j ¼ 1
αjΦðx� ~xjÞ; ð3Þ

where Φ is a fundamental solution of the operator L, i.e. ΔΦ¼ δ
(here δ denotes the Dirac distribution concentrated at the origin).
The predefined points ~x1;…; ~xN (the source points) are located
outside of the domain Ω. The a priori unknown coefficients
α1;…; αN can be computed by enforcing the boundary conditions:

∑
N

j ¼ 1
αjΦðxk� ~xjÞ ¼ u0ðxkÞ ðxkAΓDÞ;

∑
N

j ¼ 1
αj
∂Φ
∂nk

ðxk� ~xjÞ ¼ v0ðxkÞ ðxkAΓNÞ;
ð4Þ

where x1;…; xNAΓ are predefined boundary collocation points.
Then the function uN exactly satisfies Eq. (1), and exhibits
singularities at the source points.

Instead of the formulation (3) (called monopole formulation
hereafter), it is often more advantageous to use the dipole
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formulation, where the approximate solution of (1) and (2) is
sought in the following form:

uNðxÞ ¼ ∑
N

j ¼ 1
αj
∂Φ
∂nj

ðx� ~xjÞ: ð5Þ

Again, Φ is the fundamental solution of the operator L, and the
source points ~x1;…; ~xN are located outside of Ω. Now the coeffi-
cients α1;…; αN can be computed by solving the linear system:

∑
N

j ¼ 1
αj
∂Φ
∂nj

ðxk� ~xjÞ ¼ u0ðxkÞ ðxkAΓDÞ;

∑
N

j ¼ 1
αj

∂2Φ
∂nk∂nj

ðxk� ~xjÞ ¼ v0ðxkÞ ðxkAΓNÞ:
ð6Þ

Note that the monopole and the dipole formulations can be
considered as meshless discretizations of the indirect BEM based
on single layer and double layer potentials, respectively.

A common disadvantage of the traditional forms (3) and (5) is
the use of external source points, the location of which can be
hardly automatized.

Though the MFS has excellent accuracy properties (see e.g. [10]
and references therein), the systems (4) and (6) are highly ill-
conditioned in general, which is a severe drawback of the method.
This is the case especially when the source points are located
far from the boundary. On the other hand, if they are close to the
boundary, the systems (4) and (6) become much better condi-
tioned, however, the accuracy goes wrong due to the appearance
of numerical singularities at the boundary collocation points.

A usual technique is to define the source and the boundary
collocation points to coincide. Special techniques are required to
avoid the problem of singularity (regularization and desingular-
ization, see e.g. [14,7,12,8]).

In this paper, we investigate some regularized versions of both
the monopole and the dipole formulations. It turns out that, from a
computational point of view, the dipole formulation is much more
advantageous for handling pure Dirichlet problems, while for pure
Neumann problems, the monopole formulation overperforms
the dipole formulation. For mixed boundary conditions, a special
iterative technique is proposed which converts the original mixed
problem to a convergent sequence of pure Dirichlet and pure
Neumann subproblems. This results in a computationally efficient
method, which avoids also the problem of highly ill-conditioned
linear systems. The efficiency can be increased further by embed-
ding the method in a natural multi-level context.

2. Regularization and desingularization

In the rest of the paper, suppose that the source points and the
boundary collocation points x1;…; xNAΓ coincide. Then the mono-
pole formulation has the form

uNðxÞ ¼ ∑
N

j ¼ 1
αjΦðx�xjÞ; ð7Þ

where the coefficients α1;…; αN can be computed by solving the
algebraic system:

∑
N

j ¼ 1
αjAkj ¼ u0ðxkÞ ðxkAΓDÞ;

∑
N

j ¼ 1
αjBkj ¼ v0ðxkÞ ðxkAΓNÞ:

ð8Þ

Similarly, the dipole formulation has the form

uNðxÞ ¼ ∑
N

j ¼ 1
αj
∂Φ
∂nj

ðx�xjÞ; ð9Þ

where the coefficients α1;…; αN solve the algebraic system:

∑
N

j ¼ 1
αjCkj ¼ u0ðxkÞ ðxkAΓDÞ;

∑
N

j ¼ 1
αjQkj ¼ v0ðxkÞ ðxkAΓNÞ:

ð10Þ

Here the entries of the matrices A, B, C, Q are defined as follows:

Akj ¼Φðxk�xjÞ; Bkj ¼
∂Φ
∂nk

ðxk�xjÞ;

Ckj ¼
∂Φ
∂nj

ðxk�xjÞ; Qkj ¼
∂2Φ

∂nk∂nj
ðxk�xjÞ ð11Þ

for jak. Due to the singularity of the fundamental solution at the
origin, the diagonal entries cannot be computed by the above
definition.

For the proper definition of Akk, one should replace the funda-
mental solution Φ with an approximate fundamental solution Φ,
which has no singularity at the origin. Such an approximate funda-
mental solution can be defined e.g. by truncation. In polar coordi-
nates:

ΦðrÞ≔
ΦðrÞ if rZ

1
c

Φ
1
c

� �
if ro1

c
;

8>>><
>>>:

ð12Þ

provided that Φ is a radial function i.e. it depends only on r¼ jjxjj,
which is often the case. Here c denotes a carefully chosen scaling
constant which should remain inversely proportional to the char-
acteristic distance of the boundary collocation points, when N varies.
Another regularization technique is to replace Φ with the funda-
mental solution of the singularly perturbed fourth-order operator
LðI�ð1=c2ÞLÞ, where I denotes the identity operator and c is again
a scaling constant, see [8] for details. Thus, the diagonal terms Akk
can be computed without difficulty. Using the simplest truncation,
Akk ¼Φð0Þ, while for jak, Akj ¼Φðxk�xjÞ.

The proper definition of the diagonal terms Bkk is somewhat
more difficult since the derivatives of Φ have stronger singularities
at the origin than Φ itself. Let w be a smooth, easily computable
particular solution of Eq. (1), then w can be approximated by the
monopole formulation:

wNðxÞ≔ ∑
N

j ¼ 1
βjΦðx�xjÞ;

fromwhere the coefficients β1;…; βN can be computed by solving (1)
supplied with a pure Dirichlet condition. Computing the normal
derivative of the particular solution w, we have the following:

∂wN

∂n
ðxÞ ¼ ∑

N

j ¼ 1
βj
∂Φ
∂n

ðx�xjÞ:

Hence

∑
jak

βjBkjþβkBkk ¼
∂w
∂nk

ðxkÞ ðk¼ 1;2;…;NÞ:

Thus, the diagonal terms Bkk can be defined as

Bkk≔
1
βk

� ∑
jak

βjBkjþ
∂w
∂nk

ðxkÞ
 !

:

This is the desingularization idea, see e.g. [14,11,5] for details. Note
that in the simplest case of the Laplace equation w can often be
chosen e.g. by w : � 1; in the case of the modified 2D Helmholtz
equation Δu�λ2u¼ 0, a particular solution wðxÞ≔I0ðλ � jjxjjÞ can be
used, where I0 denotes the familiar modified Bessel function of the
first kind, and so on. By a proper choice of the particular solution w,
one can ensure that the coefficients βk do not vanish, so that the
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