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a b s t r a c t

In this paper, the method of fundamental solutions (MFS) is applied in combination with the domain
decomposition method to the simulation of elastic wave propagation in layered materials. The domain of
the problem under consideration is decomposed into several sub-domains. In each sub-domain, the
solution is approximated separately by the MFS formulation. At the sub-domain interfaces, continuity of
the displacement and traction is imposed as the boundary conditions. The validity of this approach is
demonstrated through a series of two- and three-dimensional numerical experiments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The simulation of elastic wave propagation in layered materials is
of interest in many instances. For example, it can be crucial to wave
propagation in fiber materials [1,2], and to seismic disturbance of
stratified soil [3,4]. Analytical solutions to such problems are rare. For
practical problems, numerical methods are required. Numerical sim-
ulation techniques have become an indispensable part of the indus-
trial process [5,6]. It is known to all that the element-based methods
such as the finite element method (FEM) [7–9] and the boundary
element method (BEM) [10–12] are powerful numerical methods for
problems in engineering. The FEM discretizes the domain of interest
into small elements. Within these elements, the solutions are appr-
oximated by shape functions. However, for large numerical models,
the FEM requires a prohibitive computational cost for mesh genera-
tion. The BEM has long been recognized as an efficient numerical tool
thanks to its distinctive feature that only the boundary needs to be
modeled. Despite this advantage, the BEM involves mathematically
complex and computationally expensive evaluation of singular or
hyper-singular integrals.

In order to overcome these disadvantages, meshless methods have
been proposed in recent decades [13–23]. The method of fundamental
solutions (MFS) [24–28] is a typical type of boundary-type meshless
methodology which can be viewed as the indirect BEM. Similar to the
BEM, the MFS works when the fundamental solutions of the govern-
ing equations are prescribed. The MFS outperforms the standard BEM
in terms of integration free, convergence speed, easy-to-use, and

meshfree merits. In the MFS, the solution is approximated by the
linear combination of fundamental solutions of the governing equa-
tions with source points located outside the solution domain so as to
overcome the singularity of the fundamental solutions. The unknown
coefficients are determined so that the boundary conditions are
imposed. The MFS is first used to approximate the solution of homo-
geneous elliptic-type partial differential equations. Furthermore, it is
used for nonhomogeneous problems in combination with the method
of particular solution (MPS) [29,30]. The MFS has already been used
for the simulation of a variety of physical problems. A survey of the
MFS and some related methods can be found in [31,32].

The objective of this paper is to formulate the MFS formulation for
the solution of the elastic wave propagation problem in layered
materials. The problems under consideration are solved by the domain
decomposition method [33–35] in combination with the MFS. The
combination of the MFS and the domain decomposition method was
applied to several physical problems in the past. Chen et al. applied the
MFS to analyze the eigenanalysis of thin membranes with stringers in
[36]. Young et al. studied the degenerate seepage flownet problems by
the MFS with the domain decomposition method [37]. Alves et al.
considered the application of the MFS to solve crack problems with
domain decomposition method [38]. In this paper, the layered mat-
erials are decomposed into several sub-domains. In each sub-domain,
the MFS is used for simulation. At the sub-domain interfaces, con-
tinuity of the displacement and the traction is imposed as the
boundary conditions. The final system of equation is constituted by
assembling algebraic equations discretized in each sub-domain, based
on the compatibility of displacement and equilibrium of traction at
adjacent interface nodes. Several numerical examples are employed to
verify the performance of the MFS approach. And the numerical results
show that they agree well with the solutions obtained by the FEM.
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The remaining of this paper is organized as follows. In Section 2,
the MFS for the elastic wave propagation problem in a single material
is briefly described. Section 3 introduces the key idea of the domain
decomposition method in combination with the MFS for the elastic
wave propagation problem in layered materials. Numerical results and
conclusions are provided in Sections 4 and 5, respectively.

2. The MFS for the elastic wave problem in a single material

This section provides a brief review on the MFS for the elastic
wave problem in a single material. In the absence of body force,
and assuming the harmonic time dependence ejwt, the governing
equation of the elastic wave propagation problem is reduced to

μ∇2uþðλþμÞ∇∇ � uþρw2u¼ 0; ð1Þ
where ρ is the mass density, w is the circular frequency,
u¼ ½u1 u2 ⋯ ud� denotes the displacement, d represents the
dimension of the problem, ∇¼ ½∂=∂x1 ∂=∂x2 ⋯ ∂=∂xd�, λ and μ are
the Lamé elastic constants which are defined as follows:

λ¼ vE
ð1þvÞð1�2vÞ; μ¼ E

2ð1þvÞ; ð2Þ

in which E is the modulus of elasticity, and v is Poisson's ratio.
The strain εik is related to the displacement gradients by means

of

εik ¼
1
2

∂ui

∂xk
þ∂uk

∂xi

� �
; i¼ 1 to d; k¼ 1 to d; ð3Þ

And the stress σik is related to the strain via Hooke's law by

σik ¼ λδikul;lþ2μεik; i¼ 1 to d; k¼ 1 to d; ð4Þ
where δik is the Kronecker delta symbol, and ð; lÞ denotes deriva-
tive with respect to xl. The boundary traction ti is defined in terms
of the stress:

ti ¼ σiknk; i¼ 1 to d; ð5Þ
where nk denotes the coordinates of the outward norm to the
boundary.

The fundamental solutions of the displacement for two-
dimensional problems are

Gikðx; sÞ ¼ Aδik�Br;ir;k; i¼ 1;2; k¼ 1;2; ð6Þ
where x¼ ½x1; x2� and s¼ ½s1; s2� are the nodes inside the solution
domain and source nodes outside the domain, respectively. A and
B are

A¼ 1
2πw2ρ

k2s K0ðjksrÞþ
jK1ðjkprÞkp

r
� jK1ðjksrÞks

r

� �
;

B¼ 1
2πw2ρ

k2s K0ðjksrÞ�k2pK0ðjkprÞ
� �

þ 1
2πw2ρ

2
jK1ðjkprÞkp

r
�2

jK1ðjksrÞks
r

� �
; ð7Þ

where Ki ði¼ 0 or 1Þ are the ith order modified Bessel functions,

ks ¼w
ffiffiffiffiffiffiffiffiffi
ρ=μ

p
, kp ¼w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=ðλþ2μÞ

p
, r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�s1Þ2þðx2�s2Þ2

q
,

r;i ¼ ðxi�siÞ=r; i¼ 1;2. Similarly, the fundamental solutions of the
traction for two-dimensional problems are

Tik ¼ λ A0 �B0 �B
r

� �
r;kniþμ A0 �B

r

� �
r;nδikþr;ink
� �

�μ
2B
r
r;kniþ2μ �B0 þ2B

r

� �
r;ir;kr;n; ð8Þ

where fng0 denotes the derivative with respect to r, and r;n ¼
r;1n1þr;2n2.

The fundamental solutions of the displacement for three-
dimensional problems are

Gikðx; sÞ ¼ Aδik�Br;ir;k; i¼ 1;2;3; k¼ 1;2;3; ð9Þ
where

A¼ 1
4πw2ρ

k2s
expð� jksrÞ

r
� jksþ

1
r

� �
expð� jksrÞ

r2

� �

þ 1
4πw2ρ

jkpþ
1
r

� �
expð� jkprÞ

r2

� �
;

B¼ 1
4πw2ρ
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3
r2
�3jks

r
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r
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� 1
4πw2ρ

k2p�
3
r2
�3jkp

r

� �
expð� jkprÞ

r

� �
; ð10Þ

in which ks ¼w
ffiffiffiffiffiffiffiffiffi
ρ=μ

p
, kp ¼w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ=ðλþ2μÞ

p
, r;i ¼ ðxi�siÞ=r; i¼ 1;2;3,

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1�s1Þ2þðx2�s2Þ2þðx3�s3Þ2

q
.

The fundamental solutions of the traction for three-
dimensional problems are

Tik ¼ λ A0 �B0 �2B
r

� �
r;kniþμ A0 �B

r

� �
r;nδikþr;ink
� �

�μ
2B
r
r;kniþ2μ �B0 þ2B

r

� �
r;ir;kr;n; i¼ 1;2;3; k¼ 1;2;3;

ð11Þ
where fng0 denotes the derivative with respect to r, and r;n ¼
r;1n1þr;2n2þr;3n3.

In the MFS, the solutions of the displacement and traction are
approximated by the linear combinations of the fundamental
solutions as follows:

uiðxmÞ ¼ ∑
d

k ¼ 1
∑
N

n ¼ 1
αknGikðxm; snÞ; xmAΓu; i¼ 1 to d; ð12Þ

tiðxmÞ ¼ ∑
d

k ¼ 1
∑
N

n ¼ 1
αknTikðxm; snÞ; xmAΓt ; i¼ 1 to d; ð13Þ

where Γu and Γt are displacement boundary condition and traction
boundary condition, respectively, Γu [ Γt constructs the whole
boundary of the domain of the problem, sn is the nth source node
outside the solution domain, αkn

	 

are the unknown coefficients

which can be obtained by imposing the boundary conditions at all
collocation nodes xmf g. Much works have been devoted to the
choice of optimal fictitious boundary nodes sn, interested readers
may refer to [24,39] and reference therein. In this study, the
locations of the fictitious boundary are pre-assigned, taken to be a
curve similar to the real physical boundary.

3. The MFS for elastic wave problem in layered materials

In this section, we consider elastic wave problem in layered
materials as shown in Fig. 1, as an example. The layered materials
are decomposed into several sub-layers. And in each sub-domain,
the MFS formulation is used. In the lth layer, the solution is
approximated by

ul
iðxmÞ ¼ ∑

d

k ¼ 1
∑
N

n ¼ 1
αl
knGikðxm; snÞ; ð14Þ

tliðxmÞ ¼ ∑
d

k ¼ 1
∑
N

n ¼ 1
αl
knTikðxm; snÞ; ð15Þ

And for xmAðlþ1Þth layer, we have

ulþ1
i ðxmÞ ¼ ∑

d

k ¼ 1
∑
N

n ¼ 1
αlþ1
kn Gikðxm; snÞ; ð16Þ
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