
Complex variables-based approach for analytical evaluation
of boundary integral representations of three-dimensional
acoustic scattering

Fatemeh Pourahmadian, Sofia G. Mogilevskaya n

Department of Civil, Environmental & Geo-Engineering, University of Minnesota, Minneapolis, United States

a r t i c l e i n f o

Article history:
Received 21 July 2014
Received in revised form
29 August 2014
Accepted 19 November 2014
Available online 31 December 2014

Keywords:
Acoustics
Helmholtz equation
BEM
Analytical integration
Complex variables

a b s t r a c t

The paper presents the complex variables-based approach for analytical evaluation of three-dimensional
integrals involved in boundary integral representations (potentials) for the Helmholtz equation. The
boundary element is assumed to be planar bounded by an arbitrary number of straight lines and/or
circular arcs. The integrals are re-written in local (element) coordinates, while in-plane components of
the fields are described in terms of certain complex combinations. The use of Cauchy–Pompeiu formula
(a particular case of Bochner–Martinelli formula) allows for the reduction of surface integrals over the
element to the line integrals over its boundary. By considering the requirement of the minimum number
of elements per wavelength and using an asymptotic analysis, analytical expressions for the line
integrals are obtained for various density functions. A comparative study of numerical and analytical
integration for particular integrals over two types of elements is performed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper extends the complex variables-based integration
technique recently developed for three-dimensional potential and
elastostatic problems [14] to three-dimensional acoustic scattering
problems described by the Helmholtz equation in frequency domain.
It is well-known that the solutions of the latter problems can be
represented by certain integrals, or combinations of integrals, over
the boundary of the domain of interest, see e.g. [1,5,7]. The unknown
fields in such representations can be found by solving the so-called
boundary integral equations. The Boundary Element Method (BEM),
see e.g. [1,5,9], is a numerical technique for solving these equations.
The technique leads to the discretized equations that involve the
integrals over the boundary elements used to approximate the
boundaries of the simulation domains. Analytical evaluation of the
integrals is an attractive option since it leads to higher accuracy of
the computation and to the reduction of its cost. This may also
facilitate the use of fast methods [11,20] and can be utilized (along
with other methods such as cubature method and nonlinear reg-
ularizing transformations, e.g. see [16]) to form a robust framework
for evaluation of BEM integrals in a more general context.

Closed-form results for the integrals involved in integral repre-
sentations of the potential and elasticity theories are reported in
many publications, especially for two-dimensional problems with
straight elements [3,10,13,22] and for three-dimensional problems
with triangular and rectangular elements [2,12,15,17,18,21,23,24].
However, only few papers report analytical results for the BEM
integrals in acoustic scattering. One of such papers [8] presents a
semi-analytical approach to evaluate singular and near singular
double integrals involved in Galerkin formulation for the Helmholtz
equation. The method employs constant approximations for the basic
functions and uses triangular boundary elements (in coplanar or
parallel planes). Analytical expressions for these integrals are pro-
vided for the singular parts of the Helmholtz Green's functions that
coincide with the kernels of a single- and double-layer potentials of
the Laplace equation, while numerical integration is used for the
remaining dynamic part. The method is based on an integration
formula for homogeneous functions that reduce an integral over an
N-dimensional domain into an integral over its boundary.

The analytical approach presented in [25] (for 3D wave propaga-
tion) and in [26] (for transient heat conduction) also deals with
singular and hypersingular BEM integrals over planar elements. The
approach employs rectangular elements and constant approxima-
tions for the unknowns and relies on the Fourier series representa-
tion for the Helmholtz fundamental solution. It is shown that the
method leads to satisfactory results, however, the minimum required
number of terms in the Fourier expansion may become large or
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sensitive to some specific parameters. Also, the possibility of spatial
contamination can be another drawback of the method.

Another somewhat relevant paper [28] reports analytical
expressions for moment integrals in the diagonal fast multipole
BEM to solve 3-D acoustic wave problems. The paper also employs
constant approximation for the unknowns and triangular elements.

In the present paper we use the complex variables-based tech-
nique proposed in [14] to evaluate three-dimensional integrals in the
BEM formulations related to the Helmholtz equation. The technique
is based on the complex integral representations that reduce the area
integrals to those over the element contour. To use these representa-
tions, various complex combinations of in-plane fields and geome-
trical parameters are formed. For polynomial approximations of
density functions in the BEM formulations, the procedure allows
for analytical integrations of all integrals (regular, singular, and
hypersingular) over planar elements bounded not only by straight
lines but also by circular arcs (and, possibly, by other simple curves).

The structure of the paper is as follows. In Section 2, we present
real variables-based integral representations involved in typical BEM
formulations for the Helmholtz equation. In Section 3, we review
various complex notations for geometry and fields and introduce
generic complex integral. In Section 4, this integral is reduced to a
contour integral using Cauchy–Pompeiu integral representation. In
Section 5, the closed form expressions for this integral over a straight
segment and a circular arc are presented. In Section 6, comparative
analyses of numerical and analytical integration for particular integrals
over elements of two types are performed. The outcome of the present
study is summarized in Section 7 and its implications are discussed.

2. Integral representations of acoustic scattering in R3

The time-harmonic scalar wave propagation is governed by the
following Helmholtz equation:

Δuþk2u¼ 0; u¼ uðx;ωÞ ¼ Re½uðxÞe� iωt �; k¼ω=c; ð1Þ

where u is the scalar field variable that is a function of position
xAR3 and frequency ω, k is the wave number, and c is the
medium's sound speed. The typical boundary element method
formulations in acoustics involve the following integrals over the
boundary, e.g. [1–3]:

� Single-layer potential

Z
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� Adjoint double-layer potential
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� Hypersingular potential
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where r¼ jζ�xj is the distance between the boundary point ζAS
and the field point xAR3; nðζÞ denotes the unit normal vector to
the boundary at the point ζ , while nðxÞ is the normal vector to
some plane containing the point x; the two scalars vðζÞ and wðζÞ
are the so-called density functions. Eq. (1) is automatically
satisfied when u is described by one of the expressions of
Eqs. (2)–(5), or their linear combinations.

3. Generic integral involved in potentials (2)–(5)

With reference to Fig. 1, S is a planar boundary element
consisting of a regular domain bounded by a piece-wise smooth
and oriented contour ∂S that does not intersect itself. The element
(local) coordinates are indicated by ðζ1; ζ2; ζ3Þ so that ζ3 is directed
along the normal vector �nðζÞ, whereas ζ1 and ζ2 are in-plane
directions chosen in such a way that ðζ1;ζ2; ζ3Þ is a right handed
coordinate system. Furthermore, assume that z is the projection of
the field point x onto the element's plane. It should be mentioned
that direction of travel on ∂S is assumed to be counter-clockwise.

As in [14], we employ the following complex combinations:

z¼ x1þ ix2; z ¼ x1� ix2;
τ¼ ζ1þ iζ2; h¼ ζ3�x3; ð6Þ
wherein z, z – also τ, τ – are hereafter treated as independent
variables. Using these combinations, the distance r is expressed as
follows:

r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðτ�zÞðτ�zÞþh2

q
: ð7Þ

In the following we would also use the Wirtinger calculus,
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The use of Eqs. (6)–(8) and the chain differentiation rule leads
to the following useful interrelations:

r;1 ¼
∂r
∂z

þ ∂r
∂z
; r;2 ¼ i

∂r
∂z

� ∂r
∂z

� �
; r;3 ¼ � ∂r

∂h
; ð9Þ

where r;j ¼ ∂r=∂xj.
In this setting, polynomial approximations of the density func-

tions vðζÞ, wðζÞ result in linear combinations of the terms
ðτ�zÞmðτ�zÞn, e.g. the monomial ðζ1Þ2 transforms to the following

Fig. 1. Planar boundary elements: (a) typical element, (b) triangular element, (c) circular sector.
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