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a b s t r a c t

In this paper, a numerical technique is proposed for solving the stochastic advection–diffusion equations.
Firstly, using the finite difference scheme, we transform the stochastic advection–diffusion equations
into elliptic stochastic partial differential equations (SPDEs). Then the method of radial basis functions
(RBFs) based on pseudospectral (PS) approach has been used to approximate the resulting elliptic SPDEs.
In this study, we have used generalized inverse multiquadrics (GIMQ) RBFs, to approximate functions in
the presented method. The main advantage of the proposed method over traditional numerical
approaches is directly simulating the noise terms at the collocation points in each time step. To confirm
the accuracy of the new approach and to show the performance of the selected RBFs, four examples are
presented in one, two and three dimensions in regular and irregular domains. For test problems the
statistical moments such as mean, variance and standard deviation are computed.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Partial differential equations (PDEs) have been widely used to
model many problems in applied sciences and engineering. PDEs
have been extensively studied in the literature and several
numerical methods have been developed for finding their approx-
imate solutions. In many practical situations such ideal informa-
tion is rarely encountered. For example, this occurs in advection–
diffusion models arising in ground water flows where exact
knowledge of the permeability of the soil, magnitude of source
terms, inflow or outflow conditions are exactly not known. The
existence of uncertainties in such problems can be described by
random fields. This requires to include, in the PDEs modeling, a
rational assessment of uncertainty. Consequently, this leads to the
notion of stochastic PDEs (SPDEs) [2–4,12,16,48].

The numerical solution of SPDEs becomes a fast growing research
area. The finite element methods (FEMs) use polynomial interpola-
tion functions to approximate the terms in the equations over small
parts of domains, called elements. By assembling all influence
matrices which express the properties of each element, a global
matrix is obtained. Similar to deterministic case the FEMs use weak
form to approximate the governing stochastic differential equation.
FEMs have been applied for the numerical solution of the stochastic

boundary and initial problems successfully, for instance see [1,9].
Finite difference methods (FDMs) are another tools that have been
applied for the numerical solution of SPDEs, for instance see
[1,42,43]. FDMs approximate the governing deterministic differential
equation using truncated Taylor series expansion, which results in a
system of algebraic equations. The method of Wiener chaos expan-
sions is another technique that has been applied for solving SPDEs,
see for example [34]. As mentioned in [41], in this approach, random
fields are discretized using polynomial chaos resulting in a set of
coupled deterministic boundary-value problems to be solved. How-
ever, the Wiener chaos expansions have some limitations in applica-
tion to stochastic boundary-value problems with complex stochastic
forcing terms. For instance, large number of chaos coefficients in
expansions are needed to accurately compute small scales. In
addition, many realizations have to be performed to obtain accurate
estimates of the required statistical characteristics. Therefore, Wiener
chaos expansions are computationally expensive.

The stochastic spectral collocation method [37] and the Itô
Taylor expansions method [36] are other numerical tools that were
discussed for solving SPDEs.

Meshless methods are powerful numerical tools that have been
applied for solving many problems in engineering and applied
mathematics. These methods do not require a mesh to discretize
the domain of the problem under consideration and the approx-
imate solution is constructed entirely based on a set of scattered
nodes. Several domain type meshless methods such as smooth
particle hydrodynamics method, element free Galerkin method,
reproducing kernel particle method, the point interpolation
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method, the moving least squares method, the meshless Petrov–
Galerkin method have been proposed and achieved remarkable
progress in solving a wide range of applied mathematic and
engineering problems, for example see [19,24,38,39,44–46].

The method of RBFs is one of the most recently developed
meshless techniques that has attracted attention in engineering
problems, for instance see [10,11,33,47,50]. Due to its simplicity to
implement, it represents an attractive alternative to the domain
decomposition methods like FDMs, FEMs as a solution method of
nonlinear differential equations, for instance see [21–23,25,26].

RBFs are widely used for solving problems arising in financial
mathematics, for instance see [5–7]. However, it is only since
rather recently that the meshless method has been used to
approximate solutions for SPDEs. Meshless method of RBFs has
been applied for the numerical solution of time-dependent [14,40]
and time-independent [29] SPDEs.

1.1. The main idea of the paper and literature review

Let D�Rd; d¼ 1;2;3 be a regular open bounded domain in Rd,
which has a smooth boundary ∂D. Also let H¼ L2ðDÞ denote a
separable Hilbert space of functions defined on D. Let Wðx; tÞ, for
xARd, tZ0, be a continuous Wiener process in a complete
probability space ðΩW ;FW ;PW Þ with a filtration fF g1t ¼ 0 [16]. It
has known mean and covariance kernel qðx; yÞ as follows:

EðWðx; tÞÞ ¼ 0;

EðWðx; tÞWðy; sÞÞ ¼minft; sgqðx; yÞ; x; yARd; 0rs; trT : ð1Þ

Our concern in the current work is developing RBFs based on
pseudospectral (PS) method for solving the stochastic advection–
diffusion equations of the following form [14,41]:

duþðν∇ � u�γ∇2u� f Þ dt ¼ σ dWðtÞ;
uðx;0Þ ¼ u0AH; xAD;

uðx; tÞj∂D ¼ g; tA ð0; TÞ;

8><
>: ð2Þ

where ∇ denotes the gradient operator and σ40. In addition, ν40
and γ40 are considered to be positive constants quantifying the
advection and diffusion processes, respectively. In addition, the
functions f and g are given such that problem (2) has a unique
solution [12,13]. We have used an additive noise as random forcing in
the stochastic advection–diffusion equations. However, the method
presented in this paper can be implemented for solving more general
additive noise acting as forcing terms in the PDEs. The function uðx; tÞ
represents, for example, the temperature in heat equations or conc-
entration in advection–diffusion equations [41]. In addition, model
(2) has been used to describe heat transfer in a draining film, water
transfer in soils, dispersion of tracers in porous media, the intrusion
of salt water into fresh water aquifers, the spread of pollutants in
rivers and streams, the dispersion of dissolved material in estuaries
and coastal seas, contaminant dispersion in shallow lakes, the
absorption of chemicals into beds, the spread of solute in a liquid
flowing through a tube, long-range transport of pollutants in the
atmosphere. For more descriptions see [17].

The authors of [41] provided the method of lines for solving
stochastic advection–diffusion equations in one and two dimen-
sions. Wan et al. [49] solved stochastic advection–diffusion equa-
tions using Wiener chaos expansions. In addition, Shardlow [42,43],
Gyöngy [30], Davie [15] proposed the FDM, Yan [51], Barth and Lang
[8] used FEM, Allen et al. [1], Du and Zhang [27] used FDM and FEM,
authors of [31,32] used eigenfunction, FDMs and wavelets for
approximating the solution of parabolic stochastic PDEs.

In this paper, we will concentrate on the numerical solution of the
stochastic advection–diffusion equations in one, two and three dimen-
sions using RBFs based on PS method as a truly meshless method.

The layout of the rest of this paper is as follows: in the first part
of Section 2, we present the temporal discretization via FDM. The
spatial discretization with the RBFs based PS method is explored in
the other part of Section 2. The numerical simulations of stochastic
advection–diffusion equations in one, two and three dimensions are
presented in Section 3 which show the satisfactory performance of
the presented method. The last section concludes a brief conclusion.

2. Mathematical formulation

In this section, we formulate RBFs based on PS method for
solving Eq. (2). Here the time splitting approach has been employed
to transform (2) into elliptic SPDE then the method of RBFs based
on PS idea has been applied for solving the resulting elliptic SPDE.

2.1. Temporal discretization

In the current work, we employ a time-stepping scheme to
overcome the time derivative. For this purpose let us discretize (2)
in time by the implicit Euler scheme at equally spaced time points

0¼ t0rt1r⋯rtn ¼ T ;

so we arrive at

un�un�1þðν∇ � un�γ∇2un� f nÞτ¼ σδWn; ð3Þ
where un≔uðx; tnÞ, τ≔tn�tn�1 and δWn≔Wtn �Wtn� 1 . Let ξx ¼
σδWn. Here ξx has the following mean and covariance function:

EðξxÞ ¼ 0;

EðξxξyÞ ¼ σ2τqðx; yÞ; x; yARd:

So Eq. (3) with the corresponding boundary conditions becomes
an elliptic SPDE of the form

Lu¼ Fþξx in D;

uj∂D ¼ G;

(
ð4Þ

where L½�� ¼ ½��þτν∇ � ½���τγ∇2½��, u≔un is unknown, F≔un�1þτf n,
G¼ : gn and ξx are given known parts. Since it follows from (3) and
the definition of Brownian motion that the noise increment σδWn at
each time instance tn is independent of the solution un�1 at the
previous step, we simulate the Gaussian field with covariance structure
σ2τqðx; yÞ at a finite collection of predetermined collocation points [14].

In the forthcoming subsection we present the RBFs method
based on PS collocation idea for the numerical solution of the
elliptic SPDE (4).

2.2. Spatial discretization

First, consider a finite collection of predetermined pairwise
distinct collocation points

XD ¼ fx1; x2;…; xNg �D; X∂D ¼ fxNþ1;…; xNþMg � ∂D:

Following [20,40] the solution of Eq. (4) can be written as
expansion

uðxÞ ¼ ∑
N

j ¼ 1
cjL2ϕðx; xjÞþ ∑

M

j ¼ 1
cjþNϕðx; xjÞ; ð5Þ

where ϕj≔ϕðx; xjÞ are strictly positive definite radial functions, i.e.,
ϕj ¼ΦðJx�xj J Þ where Jx�xj J denotes the distance between x
and the jth nodal point xj and cj; j¼ 1;…;NþM are coefficients to
be determined. Also L2ϕðx; xjÞ means that we differentiate with
respect to the second variable followed by evaluation at xj. In this
study, we will use the generalized inverse multiquadrics (GIMQ)
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