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ABSTRACT

This paper describes a 2.5D numerical frequency domain model based on the mutual coupling of the
boundary element method (BEM) and the meshless local Petrov-Galerkin (MLPG) method for simulating
elastic wave propagation in non-homogeneous media, when the geometry does not change in the z
direction. The BEM is used to model the propagation within the unbounded homogeneous domain while
the MLPG is used to simulate the confined non-homogeneous domains. The coupling of the two
numerical techniques is accomplished directly at the nodal points located at the common interface.
Continuity of mechanical displacements and tractions at the interface is imposed through the collocation
of continuity equations on the interface with use of the moving least-squares (MLS) scheme. The MLS
was also chosen for the approximation of the trial functions for the MLPG formulation.

The coupled BEM-MLPG approach is verified against the results provided by an analytical solution
developed for a circular multi-layered subdomain, in which the elastic material properties within the
circular non-homogeneous region are assumed to vary in the radial direction. Finally, an unbounded
medium containing two non-homogeneous inclusions excited by a blast load is used to illustrate the

applicability of the proposed model.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we describe a new approach for the analysis of a
classical problem in engineering mechanics of 2.5D elastic wave
propagation in non-homogeneous media. Elastic wave propaga-
tion in non-homogeneous media is a significant research topic in
various fields of engineering and science including geotechnics,
earthquake engineering and non-destructive testing.

The analytical solutions to these problems are limited to simple,
regular geometries [1-3]. That is why numerical methods are required
for general practical problems. Several numerical tools have been
developed for elastic wave propagation analysis, including the well-
known boundary element method (BEM) [4-6], the finite element
method (FEM) [7,8], the hybrid numerical method [9] and meshless
methods [10,11]. The numerical meshfree analysis of wave propaga-
tion in functionally graded media is set out in [12-15]. Wilcox et al.
[16] introduced a higher order discontinuous Galerkin scheme for the
3D wave propagation analysis of coupled elastic-acoustic media that
can be applied to seismic exploration and geophysical problems.

Many engineering problems in geotechnics and soil-structure
interactions are very complex and can grow to a large scale with
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high computational demands. In such cases supercomputers can
be used [17] or the size of the problem can be reduced with use of
infinite elements [18,19]. The BEM is particularly useful for
problems of large scale unbounded domains since the far field
boundary conditions are automatically satisfied.

Several assumptions are possible that may reduce computa-
tional efforts. In certain cases the geometry can be considered
longitudinally invariant; this is a valid assumption for roads,
railway tracks, tunnels, pipelines, dams and alluvial valleys [20].
A two-and-a-half-dimensional (2.5D) approach can be applied to
such problems of longitudinally invariant structures [21]. The
Fourier transform of the longitudinal coordinate can then repre-
sent the 3D response of the structure in a 2D discretized domain
(cross-section). Yang and Hung [22] analyzed visco-elastic bodies
subjected to moving loads by means of a 2.5D finite and infinite
element approach. A 2.5D BEM approach was also applied to
layered elastic and acoustic formations by Tadeu and Antonio [23]
and to seismic analyses [24]. An overview of the structural
response to moving loads analyzed by finite element and bound-
ary element schemes is given by Andersen et al. [25]. Boundary
element methods have been popular for recovering solutions,
primarily in the frequency domain. Fast Fourier transform may
be then used for the evaluation of time response. Accurate and
stable implicit [26] or explicit [27] time integration schemes
should be used to analyze wave propagations in the time domain.
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However, the BEM can only be used for analyzing more general
geometries and media when the relevant fundamental solutions or
Green's functions, required in the boundary integral equation, are
known. But for problems involving non-homogenous media, with
variation of elastic material properties, the fundamental solution is
generally unavailable in the closed form. The BEM also requires the
correct integration of the resulting singular and hypersingular
integrals to guarantee its efficiency [28]. Mesh based methods
such as the FEM also suffer some disadvantages. For example, if
the model to be analyzed is too complex and large the mesh
generation process, which is characteristic for these methods,
becomes very time-consuming and requires considerable compu-
tational effort. Allowing the coarse element meshes may restrict
the models to low frequencies if we wish to maintain accuracy.

Therefore, in recent years, a different type of numerical method
has been developed as an alternative to the well established mesh-
based methods or the BEM, known as meshless methods or
element free methods.

These methods require neither domain nor boundary discretization
and consequently no information on the connectivity between nodal
points and elements is needed, which eliminates some of the
mathematical complexity of mesh-based methods and provides
accurate solutions at substantially lower computational cost. One of
the advantages of meshless methods is their ability to efficiently treat
problems with continuously non-homogeneous domains, since the
unknown field quantities are approximated only in terms of nodes
instead of finite elements, thus the continuous variation of material
properties is maintained exactly. The same does not occur in case of
mesh-based methods such as the FEM, where the material properties
are constant for each finite element leading to piecewise homoge-
neous material properties in the considered domain.

Unlike some of the methods mentioned above, the MLPG
method [29,30] is a truly meshless method since it does not need
a background mesh for the numerical integration. It is based on
the local weak form of governing equations over small subdo-
mains specified for each nodal point. All integrals can be easily
evaluated over these regularly shaped, overlapping subdomains of
arbitrary shape (in general, circles for 2D problems and spheres for
3D problems) and their respective boundaries. There is only one
nodal point in each subdomain, thus the local sense of the
approach is kept. In the MLPG method, trial and test functions
can be chosen from different functional spaces, which allow
several MLPG formulations [31]. The application of the MLPG
method to the analysis of a broad range of scientific problems is
summarized in the review article by Sladek et al. [32].

However, like mesh-based techniques, the meshless methods have
their own disadvantages and limitations. The interpolations and the
algorithm implementation tend to be computationally expensive and
these methods may not be efficient for problems with infinite and
semi-infinite domains [33]. Therefore, many researchers have been
proposing the coupling of appropriately selected methods to alleviate
specific limitations of individual methods and improve efficiency,
accuracy and flexibility. The MLPG method has been coupled with the
FEM for problems involving elasticity problems [34], potential problems
[35] or electromagnetic field computations [36]. Tadeu et al. [37] used a
coupled BEM-MLPG approach for the thermal analysis of non-
homogeneous media. Direct coupling with the use of an MLS approx-
imation scheme was employed. A similar technique was also used for
the acoustic analysis of non-homogeneous inclusions [38]. Other
examples include combinations of the BEM with the method of
fundamental solutions (MFS) [39,40], BEM with meshless Kansa's
method [41], FEM with EFG method [42,43] and BEM with EFG method
[44]. Alves Costa et al. [45] proposed a coupled FEM-BEM approach for
the 2.5D analysis of track-ground vibrations. The environmental impact
of railway traffic and mitigation of track vibration have been studied
and the results compared with experimental measurements. The

coupling of the BEM and MFS for the 2.5D analysis of elastic wave
propagation in the frequency domain is described in [46]. Accurate 2.5D
MEFS analyses have also been presented [47] as well as an analytical 2.5D
approach for multilayered media [48].

Certain heterogeneous media can be characterized as multi-
component composites with smooth variation of the volume
fraction of the constituents. If the volume fraction of the consti-
tuents predominantly varies in a particular direction, we are
talking about functionally graded materials (FGMs). A review of
various aspects of FGMs can be found in the monograph by Suresh
and Mortensen [49]. Liu et al. [50] presented a comparison of
various numerical techniques for the elastodynamic analysis of
FGMs. Han et al. [9] analyzed transient elastic waves in FGM plates
and an FGM cylinder [51]. As mentioned above, meshless methods
are advantageous for the analysis of elastodynamics and elastic
wave propagation in continuously non-homogeneous media such
as FGMs. Sladek et al. [52] applied the MLPG to elastodynamic
problems in continuously non-homogeneous bodies. Efficient
analytical evaluation of integrals in the meshless local integral
equation method [53-55] was implemented for elastodynamic
problems by Soares Jr et al. [56] and by Wen and Aliabadi [57]. The
local boundary integrals are obtained in closed form, therefore no
domain or boundary integrals have to be calculated numerically.
Racz and Bui [58] introduced a novel adaptive integration techni-
que for meshless methods. The elastic wave propagation in a
functionally graded nanocomposite reinforced by carbon nano-
tubes has recently been analyzed by means of the MLPG [59].

In this paper we propose applying a BEM and MLPG coupling
formulated in the frequency domain to the analysis of elastic wave
propagation through a 2.5D unbounded homogeneous domain
containing inclusions with a non-homogeneous variation of elastic
properties. The elastic material properties inside the inclusion are
assumed to vary in a smooth fashion. The advantages of each method
are exploited by using the BEM for the homogeneous unbounded
domain and the MLPG for the non-homogeneous inclusion. Nodal
points are introduced inside the non-homogeneous domain and on
the interface, where the same nodal points are used for the
specification of boundary elements. The continuity conditions for
the displacements and tractions are specified at these interface
nodes. The moving-least squares (MLS) approximation is applied to
the MLPG formulation for the approximation of unknown nodal
quantities inside the non-homogeneous domain, and to the con-
tinuity conditions. This direct coupling method does not require the
iterative technique or the concept of overlapping ‘double nodes’ for
mutual BEM-MLPG coupling.

In the case of 2.5D wave propagation in elastic media presented
here, the resulting hypersingular kernels appearing in the BEM
formulation can be computed analytically [60].

The proposed coupled BEM-MLPG approach is verified against an
analytical solution known for having a simple geometry. Circular
cylindrical domains are modeled to illustrate the efficiency of the
proposed methodology, since in this case analytical solutions can be
defined. Finally, a numerical example is used to illustrate the applic-
ability of the proposed method. The responses in the time domain are
obtained by means of a fast inverse Fourier transform. Some conclu-
sions are drawn and the quality of the numerical results is discussed.

2. Definition of the problem

Elastic wave propagation in a non-homogeneous isotropic
medium is governed by the following equilibrium equation:
0j(X, t) = pili(X, t) (1)

where o is the stress tensor, u; are mechanical displacements and
p is the mass density. A comma followed by an index denotes
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