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a b s t r a c t

We investigate a sideways problem of reconstructing an inaccessible boundary value for parabolic
equation with variable coefficients. Formulating the sideways problem into a sequence of well-posed
direct problems (DP) and a system of Ordinary Differential Equations (ODE), we combine the recently
developed finite integration method (FIM) with radial basis functions (RBF) to iteratively obtain the
solution of each DP by solving an ill-posed linear system. The use of numerical integration instead of
finite quotient formula in FIM completely avoids the well known roundoff-discretization errors problem
in finite difference method and the use of RBF as forward collocation method (FCM) gives a truly
meshless computational scheme. For tackling the ill-posedness of the sideways problem, we adapt the
traditional Tikhonov regularization technique to obtain stable solution to the system of ODEs.
Convergence analysis is then derived and error estimate shows that the error tends to zero when
perturbation δ-0. We can then obtain highly accurate and stable solution under some assumptions.
Numerical results validate the feasibility and effectiveness of the proposed numerical algorithms.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary value determination problems arise from the textiles
manufacture and design industry in which the surface heat and
moisture transfer are to be determined. Consider the following
parabolic equation which models the temperature on both sides of
a thick wall or the temperature and/or humidity on an inaccessible
surface of a body:

ut ¼∇ � κ∇uð ÞþΘðx; tÞ; xAΩ; tAð0; TÞ;
uðx;0Þ ¼ vðxÞ; xAΩ;

ujΓ1
¼w1ðx; tÞ;

∂u
∂n

����
Γ2

¼w2ðx; tÞ; xAΩ; tA ½0; T �;

8>>><
>>>: ð1Þ

where Ω�Rn is a bounded domain, Γi; i¼ 1;2, are part of the
boundary ∂Ω and T is a prescribed number. The sideways parabolic
problem is to recover the boundary value on the remaining part
∂Ω⧹ðΓ1 [ Γ2Þ.

For example, the heat and moisture transfer within textiles
gives the following 1-D sideways parabolic problem:

ε
∂Ca

∂t
¼Daε

τ

∂2Ca

∂x2
�γðx; tÞ; ðx; tÞAð0; LÞ � ð0; TÞ;

Caðx;0Þ ¼ C0ðxÞ; xA ½0; L�;
CaðL; tÞ ¼ C1ðtÞ;

Daε

τ

∂Ca

∂x

����
x ¼ L

¼ CEðtÞ
�Caj x ¼ Lw1þð1=hcÞ; tA ½0; T �:

8>>>>><
>>>>>:

ð2Þ
See [1–6] for reference. Here, we intend to recover the boundary
value Cað0; tÞ; tA ½0; T �. For 2-D case, the sideways parabolic
problem can be formulated as

ut ¼∇ � κ∇uð ÞþΘðx; y; tÞ; ðx; yÞAΩ; tA ð0; TÞ;
uðx; y;0Þ ¼ vðx; yÞ; ðx; yÞAΩ;

uðx; c; tÞ ¼ φ1ðx; tÞ;uðx; d; tÞ ¼ φ2ðx; tÞ; xA ½a; b�; tA ½0; T �;
uðb; y; tÞ ¼ ψ2ðy; tÞ; uxðb; y; tÞ ¼ χðy; tÞ; yA ½c; d�; tA ½0; T �;

8>>>><
>>>>:
where Ω¼ ða; bÞ � ðc; dÞ. The inverse problem is then to recover the
boundary value uða; y; tÞ. In the following sections, we focus on
solving the sideways problem for 1-D and 2-D cases. We note here
that the proposed method is readily extendable to handle n-
variate problems ðnZ3Þ.
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For simplicity, we rewrite (2) in a unified form: Determine the
boundary value uð0; tÞ such that

∂u
∂t

¼ α1ðx; tÞ
∂2u
∂x2

þα2ðx; tÞ
∂u
∂x

þα3ðx; tÞuþΘðx; tÞ; ðx; tÞA ð0; LÞ � ð0; TÞ;
uðx;0Þ ¼ vðxÞ; xA ½0; L�;
uðL; tÞ ¼ ψðtÞ; uxjx ¼ L ¼ χðtÞ; tA ½0; T �:

8>>><
>>>: ð3Þ

The corresponding direct problem (DP) is given by

∂u
∂t

¼ α1ðx; tÞ
∂2u
∂x2

þα2ðx; tÞ
∂u
∂x

þα3ðx; tÞuþΘðx; tÞ; ðx; tÞA ð0; LÞ � ð0; TÞ;
uðx;0Þ ¼ vðxÞ; xA ½0; L�;
uð0; tÞ ¼ φðtÞ; uðL; tÞ ¼ ψðtÞ; tA ½0; T �:

8>>><
>>>: ð4Þ

If the left boundary value φðtÞ is unknown and the solution of (4) is
denoted by u½φ�, then the 1-D sideways problem can be stated as
follows: Find a suitable φðtÞ such that u½φ� is the solution of (3).

It is well known that sideways problem for Laplace equation or
heat equation is ill-posed in Hadamard's sense: any small change
in the input data may result in a dramatic change in the solution.
Some kinds of regularization techniques are necessary for stabiliz-
ing the computation. A number of numerical methods for the
sideways parabolic problem have been proposed, which can be
divided into two categories: finite difference method and Fourier
transform method.

In [7], Murio developed a mollification method for solving a
similar 1-D sideways parabolic problem. The method filters the
noisy data by discrete convolution with a suitable averaging kernel
and adopts explicit finite differences, marching in space, to
numerically solve the associated well-posed problem. Murio [8]
further improved the mollification method by incorporating the
necessary initial filtering procedure into the marching scheme
itself. From the regularization and approximation properties of a
few time marching schemes, Eldén [9] demonstrated that time
discretization prevents high frequencies in the solution from
blowing up. In other words, finite difference in time has a
regularizing effect.

The Fourier transform method was firstly used by Hào in [10] to
solve the following 1-D sideways parabolic problem

ut ¼ aðxÞuxxþbðxÞuxþcðxÞu; x40; t40;
uðx;0Þ ¼ 0; xZ0;
uð1; tÞ ¼ gðtÞ; tZ0;
uðx; � Þ

��
x-1 is bounded;

8>>>><
>>>>:

ð5Þ

in which a stability estimate of the Hölder type for the solution was
established for a stable solution by using the mollification method.
The common technique adopted in Fourier transform method is to
transform the original partial differential equation (PDE) into a system
of Ordinary Different Equations (ODE) in Fourier domain. To stabilize
the solution process in solving this system of ODEs, we usually
eliminate high frequencies from the Fourier inversion formula to
determine the cut-off by various regularization methods, which has
been considered in [11–13]. In fact, the solution can be presented by

uðx; tÞ ¼ 1ffiffiffiffiffiffi
2π

p
Z 1

�1
eiξt

vðx; ξÞ
vð1; ξÞĝðξÞ dξ ð6Þ

and vðx; ξÞ is the solution of the following boundary value problem:

iξvðx; ξÞ ¼ aðxÞvxxþbðxÞvxþcðxÞv;
vð0; ξÞ ¼ 1;
lim
x-1

vðx; ξÞ ¼ 0; ξa0:

8>><
>>: ð7Þ

For ξ¼ 0, it requires that vðx;0Þ is bounded as x tends to 1. The
Fourier regularization method replaces the solution by

uδ
maxðx; tÞ ¼

1ffiffiffiffiffiffi
2π

p
Z 1

�1
eiξt

vðx; ξÞ
vð1; ξÞĝðξÞχmax dξ ð8Þ

where χmax is the characteristic function of interval ½�ξmax; ξmax� and
ξmax plays a role of regularization parameter. Xiong et al. in [14]
proposed three spectral regularization methods to solve the general
sideways parabolic equation. Other methods, such as Tikhonov
method, wavelet and wave-Galerkin method, optimal approximations
and optimal filtering method, can be found in [15–18]. Deng et al. in
[19] introduced a new class of iteration methods to solve the inverse
problem and proved that their methods are of order optimal under
both a priori and a posteriori stopping rules.

Since the Fourier transform requires only the coefficient func-
tion in x, the cut-off can be used to avoid the tedious convolution
process. In addition, if we append an additional term f ðx; tÞ or f(u)
to the right-hand side of the equation, then the Fourier transform
may become invalid, especially for nonlinear f(u).

For numerical approximation, we combine in this paper the
recently developed finite integration method (FIM) with radial
basis functions (RBF) [23–26] to iteratively obtain the solution of
each DP by solving an ill-posed linear system. To tackle the ill-
posedness of the sideways problem, we adapt the traditional
Tikhonov regularization technique to obtain stable solution to
the system of ODEs. The use of the RBF as forward collocation
method (FCM) with the regularization technique gives a truly
meshless computational scheme to cope with the ill-posedness
system. One of the advantages of FCM is that we only need to
develop various numerical algorithms for solving each DP in which
the use of FIM completely avoids the well known roundoff-
discretization error problem in using traditional finite difference
method (FDM). Since the error of FIM depends on the choice of
numerical quadrature formula, it can achieve much higher accu-
racy than FDM. Both error estimation and numerical examples
given in the following confirm this distinct advantage. In addition,
this FCM-FIM method is flexible to handle more general sideways
problems with coefficients varying in x and t and equation with
additional source term.

The paper is organized as follows. In Section 2, we present the
general framework of FCM-FIM and explain how to use the FIM to
solve ODE and obtain the error estimate by Tikhonov regulariza-
tion method. In Section 3, the FIM is employed to solve PDE for 1-
D and 2-D, respectively. Using the finite quotient to approximate
the time derivative, we transform the sideways problem into a
system of ODEs, whose solution is obtained iteratively by using the
FIM. Several examples are constructed in Section 4 to verify the
effectiveness and accuracy of the proposed FCM-FIM.

2. General framework of FCM-FIM

2.1. Forward collocation method (FCM)

For given φðtÞ chosen from a set of admissible boundary profiles
Φ� C1ð0; TÞ, assume that under some natural conditions the DP
has a unique solution denoted by u½φ� ¼ uðx; t;φÞ. If the solution
uðx; t;φÞ satisfies the additional condition ∂u=∂x

��
x ¼ L ¼ χðtÞ for

some functions φðtÞAΦ, then φ¼ φðtÞ is said to constitute a
solution of the sideways problem.

From the least-square functional

FðφÞ ¼
Z T

0

∂u½φ�
∂x

����
x ¼ L

�χðtÞ
� �2

dt

( )1=2

¼ j 9∂u½φ�
∂x

����
x ¼ L

�χðtÞ9jL2 ð0; TÞ;

ð9Þ

we consider the following minimization problem:

φn ¼ arg inf
φAΦ

FðφÞ: ð10Þ
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