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a b s t r a c t

This paper is concerned with a meshless simulation of the two dimensional Landau–Lifschitz–Gilbert
(LLG) equation which describes the dynamics of the magnetization inside a ferromagnetic body. After
elimination of the time variable by a suitable finite difference scheme, a combination of the meshless
local RBF and the finite collocation method is used for spatial discretizations of the field variables. Three
test problems are numerically investigated and the results reveal the effectiveness of the method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Ferromagnetic materials have long been the subject of scientific
studies. It is well known that they play an important role in the
industry such as magnetic sensors, actuators, reading-writing
heads, information storage media, passive circuit elements [1].
The first description of the evolution of the magnetization inside a
ferromagnetic material was suggested by Landau and Lifschitz in
1935 [2]. They proposed the following equation:

∂mðx; tÞ
∂t

¼ α1mðx; tÞ �Heff �α2mðx; tÞ

�ðmðx; tÞ �Heff Þ; xAΩ; 0otoT ð1:1Þ

with the given initial condition

mðx;0Þ ¼m0ðxÞ; ð1:2Þ
and the homogeneous Neumann boundary condition

∂mðxÞ
∂n

¼ 0; xA∂Ω; ð1:3Þ

where Ω�R2 is a multi-connected bounded domain, m : ð0; TÞ �
Ω-S2 is an unknown magnetization vector field and ‘� ’ is the
three dimensional cross product. Also n is the unit outward

normal vector on Ω and S2 ¼ fxAR3 : jxj ¼ 1g is the unit sphere.
It means that m has a length-preserving property during the
evolution process. This comes from a scalar multiplication of (1.1)
with m. So mt �m¼ 0; then, ∂jmj 2

∂t ¼ 0, which implies jmðx; tÞj is
constant for all t and each x as it is the case for jmðx;0Þj . Also,
α1a0 is a gyromagnetic constant factor, and α240 is a damping
constant parameter which makes the equation parabolic. Here,
Heff is the effective field and is the (opposite of the) functional
derivative of the free energy E

Heff ¼ � ∂E
∂m

:

In the simplest situation when the energy functional consists of
the exchange energy only, the effective field is Heff , Δm, and
energy is

EðmÞ ¼ 1
2

Z
Ω
j∇mj 2 dΩ:

It is easy to check that

d
dt
EðmÞ ¼ �α2

Z
Ω
jm�Δmj 2 dΩ¼ � α2

1þα2
2

Z
Ω
j ∂tmj 2 dΩ:

That is, this problem has energy dissipation property for the
case α240 and energy conservation property for the case α2 ¼ 0.
Two special cases of (1.1) are of particular geometrical interest. If
α2 ¼ 0, then Eq. (1.1) reduces to the gyromagnetic term

mt ¼ α1m�Δm: ð1:4Þ
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Solutions of (1.4) are often called Schrödinger maps, because
the equation is of the type of a nonlinear Schrödinger equation
(which is most obvious when m is composed with the stereo-
graphic projection) [3]. This equation describes the Hamiltonian
(or symplectic) flow of harmonic maps to S2 [3]. If α2 ¼1, then
Eq. (1.1) reduces to

mt ¼ �m� ðm�ΔmÞ;
mt ¼Δmþj∇mj 2m;

where we have used the fact that ðm;mÞ ¼ 1. This equation
describes the heat flow of harmonic maps.

In [4], Gilbert introduces a different approach for description of
damped precession. He introduced the following equation:

α1mtþα2m�mt ¼ ðα2
1þα2

2Þm�Δm; ð1:5Þ
which was named as the Landau–Lifshitz–Gilbert (LLG) equation.
Eqs. (1.1) and (1.5) are mathematically equivalent and its proof can
be found in [5]. Although Eqs. (1.1) and (1.5) are mathematically
equivalent; but, (1.5) gives more numerically stable solutions than

(1.1) because the latter has a double cross term, namely
m� ðm�Heff Þ. So instead of Eqs. (1.1)–(1.3) , we solve (1.5) with
the initial condition (1.2) and boundary condition (1.3). LLG
equation is a nonlinear system of partial differential equations.
Due to the nonlinearity that appears in the LLG equation, finding
numerical approximations of Eq. (1.5) is very important for
applications, and numerous strategies already exist in the litera-
ture [1,3,5,25]. Classical schemes are based on finite differences
that are, as usual, well adapted to Cartesian grids. On the other
hand, finite element approximation is other method that applied
in [6,25]. This paper aims to numerically simulate Eq. (1.5) via a
local meshless method. Meshless methods [7–11,15–20] are very
attractive and effective for solving boundary value problems,
because they involve simple preprocessing, arbitrary node dis-
tribution and flexibility of placing nodes at arbitrary locations,
straightforward adaptive refinement, versatility in solving large
deformation and also have the high order continuity and the
ability to treat the evolution of non-smooth solutions, which is
very useful to solve PDE problems. Many of them are derived from
a weak-form formulation on a global domain or a set of local

Fig. 1. Configuration of stencils.
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Fig. 2. Numerical approximation of m̂ðx; y; tÞ for Ex. 1 with N1 ¼ 172, α2 ¼ 1, s¼1 and c¼2: (a) t¼0, (b) t¼0.0119, (c) t¼0.0295, (d) t¼0.0495, (e) t¼0.0588 and (f) t¼0.0646.
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