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a b s t r a c t

Using a meshless local natural neighbor interpolation (MLNNI) method, natural frequencies of
moderately thick plates made of functionally graded materials (FGMs) are analyzed in this paper based
on the first-order shear deformation theory (FSDT), which is employed to take into account the
transverse shear strain and rotary inertia. The material properties of the plates are assumed to vary
across the thickness direction by a simple power rule of the volume fractions of the constituents. In the
present method, a set of distinct nodes are randomly distributed over the middle plane of the considered
plate and each node is surrounded by a polygonal sub-domain. The trial functions are constructed by the
natural neighbor interpolation, which makes the constructed shape functions possess Kronecker delta
property and thus no special techniques are required to enforce the essential boundary conditions. The
order of integrands involved in domain integrals is reduced due to the use of three-node triangular FEM
shape functions as test functions. The natural frequencies computed by the present method are found to
agree well with those reported in the literature, which demonstrates the versatility of the present
method for free vibration analysis of moderately thick functionally graded plates.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concepts of functionally graded materials (FGMs) were
proposed by material scientists in the Sendai area of Japan [1] in
1984 and then developed rapidly over the world. In FGMs, material
properties are inhomogeneous and changing gradually and
smoothly in position so that no distinct physical interface appears.
The absence of distinct interface avoids stress concentration,
which may occur at the interface of two bonded dissimilar
materials when heated or cooled. With the advantageous features
in many practical applications, FGMs have been extensively
studied over the world by scientists [2–7].

Functionally graded (FG) plates are usually designed purpose-
fully to resist high thermal flux and corrosion by a ceramic-rich
surface and to sustain mechanical loads by another metal-rich
surface, possessing continuously changed effective material prop-
erties in the thickness direction only. The analyses of FG plates are
more and more attractive due to their increasing applications. A
few researchers [5,6] employed classical plate theory to analyze
vibration and static behavior of thin FG plates. However, the
classical plate theory under predicts deflections and over predicts

frequencies as well as buckling loads for moderately thick plates
because it does not take into account the transverse shear
deformation effect [7]. Consequently, many shear deformation
theories accounting for transverse shear effects have been devel-
oped to overcome the deficiencies of the classical plate theory. The
first order shear deformation theory (FSDT) based on Reissner [8]
and Mindlin [9] accounted for the transverse shear effects by
means of linear variation of in-plane displacements across the
thickness. Due to its high efficiency and simplicity, the FSDT is
considered to be a pioneering theory and has been widely used for
analyzing moderately thick FG plates [10–20]. Unfortunately, a
shear correction factor is required in the FSDT to amend the effect
of uniform transverse stress in shear forces. The shear correction
factor is hard to determine since it depends on many parameters.
To avoid the use of shear correction factor, some higher-order
shear deformation theories (HSDTs) [21–25] have been proposed.
Although the HSDTs do not require the shear correction factor,
their equations of motion are more complicated than those of
the FSDT.

Although several analytical solutions [26,27] have been pre-
sented for the analysis of FG plates, it is in general difficult to
obtain the exact solution for all problems because of the complex-
ity of mathematics. Therefore numerical methods are essential for
simulating FG plates. Among them the finite element method
(FEM) has attracted considerable attention due to its accuracy,
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convenience and flexibility. However in the case of complex
geometries the generation of highly distorted meshes is common.
The distortion of meshes causes low quality shape functions which
can affect the performance of the method. So far Long and Cen's
research group has proposed various quadrilateral area coordinate
(QAC) elements [28–30], which successfully avoid the loss of
accuracy when element shapes are distorted. Besides, more and
more attention is paid to the development and application of
meshless methods [31–36], which construct the approximation
solutions completely in terms of a set of orderly or scattered nodes
that discretize the problem domain, which means not only that
the burdensome work of mesh generation is avoided, but also
more accurate description of irregular complex geometries can be
achieved. The success of the meshless methods has been reported
in solving a wide range of computational problems, proving
popular due to their rapid convergence characteristics and their
ability to obtain highly accurate solutions for problems involving
stress discontinuities. As a result, the application of the meshless
methods in analyzing FG plates is of great interest and deserves
study. Recently, some meshless approaches [10–20,23,24] were
devised for the analysis of FG plates. In addition, Liew et al. [37]
published a review of meshless methods for the analyses of
laminated and functionally graded plates and shells.

In this paper, the meshless local natural neighbor interpolation
(MLNNI) method [38,39] is further formulated for free vibration
analysis of moderately thick FG plates. In the MLNNI method, the
test and trial functions are chosen from different functional spaces,
with trial functions being interpolated by the natural neighbor
interpolation (NNI) [40], and the three-node triangular FEM shape
functions used as the test functions. Therefore the MLNNI method
combines the advantage of easy imposition of essential boundary
conditions of the NNI with some prominent features of the
meshless local Petrov–Galerkin (MLPG) method. These salient
advantages of the MLNNI method have been further demonstrated
by some recent developments [41–45]. The first-order shear
deformation theory is used to take into account the transverse
shear strain and rotary inertia. The elastic properties of the FG
plates are determined by the volume fractions of their constitu-
ents, which vary continuously through their thickness according to
a power law. The local weak forms of governing equations are
established based on local polygonal sub-domains centered at
each node. The numerical studies are conducted to demonstrate
the accuracy, stability and effectiveness of the present method.

2. Functionally graded material properties

As shown in Fig. 1, a functionally graded (FG) plate composed of
ceramic and metal phases is considered. Without losing generality,
it is assumed that the top surface of a FG plate is ceramic rich and
bottom is metal rich. The material properties vary across the

thickness according to the following equation:

PðzÞ ¼ PcVcþPmVm ð1Þ
where P represents the effective material properties including
Young's modulus E, density ρ, and Poisson's ratio v. Pc , Vc and Pm,
Vm are the material properties and volume fractions of the ceramic
and metallic constituent materials, respectively. The relation
between Vc and Vm can be given as follows:

VcþVm ¼ 1 ð2Þ
In the present study, a power law variation of the material
properties is considered:

Vc ¼ 1
2
þ z
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where h represents the thickness of the plate and n the volume
fraction exponent. Fig. 2 shows the variation of the volume
fraction through the thickness for different exponents n. It can
be assumed that the material is isotropic within the plane parallel
to the middle plane of the plate. If n¼ 0 the plate is made of full
ceramic, while for n approaching infinity the case of the fully
metallic plate is obtained.

3. Equations of motion for moderately thick FG plates

According to the FSDT [10–20], the displacement field can be
expressed as

uðx; y; z; tÞ ¼ u0ðx; y; tÞþzθxðx; y; tÞ ð4aÞ

vðx; y; z; tÞ ¼ v0ðx; y; tÞþzθyðx; y; tÞ ð4bÞ

wðx; y; z; tÞ ¼w0ðx; y; tÞ ð4cÞ
where u0, v0 and w0 denote the displacements of the mid-plane of
the plate in the x, y, and z directions, and θx and θy represent the
rotations of a transverse normal about positive y and negative x
axes, respectively. Clearly, a three-dimensional problem can be
reduced to a pseudo two-dimensional problem with the assump-
tion of the FSDT.

The linear strain–displacement relations based on the FSDT are
expressed in a vector form as
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Fig. 1. Sketch of functionally graded plate.
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Fig. 2. Volume fraction versus thickness.
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