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a b s t r a c t

An augmented Lagrangian method, based on the fixed point method and boundary variational
formulations, is designed and analysed for frictionless contact problems in linear elasticity. Using the
equivalence between the contact boundary condition and a fixed point problem, we develop a new
iterative algorithm that formulates the contact problem into a sequence of corresponding linear
variational equations with the Steklov–Poincaré operator. Both theoretical results and numerical
experiments show that the method presented is efficient.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Contact problems have a large variety of applications in solid
mechanics, including unilateral and bilateral contact or normal
compliance conditions with friction [1–4]. Due to their nonlinear
boundary conditions, these problems are difficult to solve. In the
last 50 years, variational inequalities were a powerful tool in the
mathematical study of contact problems, as the complexity of the
boundary conditions and the diversity of the constitutive equa-
tions lead to variational formulations of inequality type. This and
the fast development of computing power have led to an increased
attention in the field of numerical algorithms for the problem.
Presently there are two typical approaches for the numerical
solution of the contact problem. One is to start with the discrete
problem by the finite element method (FEM) [1–5] or the
boundary element method (BEM) [6–10] and obtain a linear
complementary problem, which generally results in an optimiza-
tion problem in finite dimensional space. The second approach to
solve the problem is to use the Lagrange multiplier. Then the
contact problem is transformed into a sequence of linear elasticity
problems [11–17]. The development of new, fast, and reliable
methods for the numerical simulation of contact problems is still
an area of frequent research [18–26].

Recently the fixed point method, based on the projection techni-
que, has been successfully applied to complementary problems such
as contact problems in linear elasticity [12,13,22,25–27]. The main idea

of this method is to transform the complementary conditions into a
fixed point problem using projection, which is very useful in devel-
oping various iterative methods for solving the original problem.
During the last ten years, a number of fixed point methods have been
studied extensively [12,13,16,17,23,26]. In these methods, the problem
has been formulated only by equality with a projection operator, and
no other inequality constraint is needed. In comparison to other
methods, the fixed point method seems much easier to implement
using the FEM.

On the other hand, BEM has turned out to be an accurate and
effective method for many partial differential equations, including
linear elasticity. The main benefit of BEM is the significant reduction of
expense mesh generation because the formulation of the problem is
reduced to the boundary of the domain. In the case of contact
problems, the key unknowns are displacement and stress on the
contact boundary, which are considered primary variables in BEM and
can be obtained directly [30,31]. Therefore, the BEM is more appro-
priate for contact problems [6–9,32–36]. However, little attention has
been paid to the contact problem using the fixed point method and
BEM up to now.

The main goal of this paper is to develop a boundary augmen-
ted Lagrangian method (BALM) to deal with frictionless contact
problems, focusing on fixed point methods and the BEM. For the
contact problem, we first use the projection technique to deal with
the nonlinear boundary conditions and obtain an equivalent
formulation. Next, the link of the boundary weak formulation
with the corresponding original problem is given. An advantage of
the formulation is that, as compared with other methods, there is
no inequality constraint and only a boundary integral equation is
needed, which is useful from both theoretical and numerical
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points of view. Thanks to these transformations, we then propose
a BALM for the contact problem, which needs only the iteration for
boundary values and the computation of the boundary variational
problem. We can use properties of projection and Steklov–Poin-
caré operator (also known as the Dirichlet-to-Neumann mapping)
to analyse the convergence of the method. Usually the augmented
Lagrangian method (ALM) needs to solve a nonlinear problem in
every iteration step, but the semismooth Newton method can be
applied for the solution [11,12,14]. Numerical results show that our
method is accurate and efficient.

The paper is organized as follows. In Section 2 we start with the
classical frictionless contact problem and introduce the fixed
formulation of the contact boundary conditions. We recall the
boundary integral operators for the Steklov–Poincaré operator and
obtain the boundary variational formulation in Section 3. In
Section 4 we propose a BALM for the contact problem and give
convergence analysis of the method, which shows unconditional
monotone convergence for all positive parameters. In Section 5,
we carry out two numerical examples to investigate the perfor-
mance of our method, and finally a brief conclusion and perspec-
tives are drawn in Section 6.

2. Setting of the problem

For the sake of simplicity, we consider the frictionless contact
problem in an open and bounded domain Ω�R2 with a Lipschitz
boundary Γ ¼ ∂Ω. This boundary Γ consists of three disjointed
parts ΓD, ΓN and ΓCa∅, where Dirichlet, Neumann and friction-
less contact conditions are prescribed. Let n and t be the normal
and tangential vector fields on Γ, respectively. For given boundary
traction t̂A ðL2ðΓNÞÞ2 and given obstacle gAH1=2ðΓCÞ, find the
displacement u such that

�div σðuÞ ¼ 0 in Ω; ð2:1Þ

u¼ 0 on ΓD; ð2:2Þ

σðuÞÞn¼ t̂ on ΓN ; ð2:3Þ

σtðuÞ ¼ 0 on ΓC ; ð2:4Þ

unrg; σnðuÞr0; σnðuÞðun�gÞ ¼ 0 on ΓC : ð2:5Þ

where σ denotes the stress tensor and σn and σt are the normal
contact traction and the tangential contact traction, respectively.
In this paper, we adopt the following decomposition for the
displacement and the stress vector fields:

u¼ unnþut and σðuÞÞn¼ σnðuÞÞnþσtðuÞ:

It has been proven in the theory of variational inequalities that this
problem has a unique solution [21,22].

On the boundary ΓC, the zone of the classical Dirichlet and
Neumann boundary conditions is unknown in advance. Therefore,
the main challenge in such problem is how to identify the boundary
condition on ΓC. In this paper we transfer the complementary
conditions (2.5) to a fixed point problem [22,23,28,29,37,38]. Let us
introduce the projection notation for aAR:

½a�þ≔
a if a40;
0 otherwise:

�

Consequently, we obtain the following result for the contact boundary
condition. For the benefit of the reader, we give the proof according to
[22,23].

Lemma 2.1. For all ρ40, the contact conditions (2.5) on ΓC are
equivalent to

σnðuÞþ½ρðun�gÞ�σnðuÞ�þ ¼ 0 on ΓC : ð2:6Þ

Proof. Let un and σnðuÞ such that (2.5) holds. From the condition
σnðuÞr0 we have either σnðuÞo0 or σnðuÞ ¼ 0. Suppose first that
σnðuÞo0. Then the condition σnðuÞðun�gÞ ¼ 0 implies that un ¼ g.
In this case, it holds

½ρðun�gÞ�σnðuÞ�þ ¼ ½�σnðuÞ�þ ¼ �σnðuÞ:
Then, suppose that σnðuÞ ¼ 0. The condition unrg can also be
expressed as ½ρðun�gÞ�þ ¼ 0, so

½ρðun�gÞ�σnðuÞ�þ ¼ ½ρðun�gÞ�þ ¼ �σnðuÞ:

On the other hand, let un and σnðuÞ such that (2.6) holds. Note
first that it implies σnðuÞr0. If σnðuÞ ¼ 0, then (2.6) can be
rewritten as

½ρðun�gÞ�þ ¼ 0;

which is equivalent to condition unrg. Hence, the following
condition also holds:

σnðuÞðun�gÞ ¼ 0

We now consider the case σnðuÞo0. From (2.6), ½ρðun�gÞ�
σnðuÞ�þ 40, so that in this case

�σnðuÞ ¼ ½ρðun�gÞ�σnðuÞ�þ ¼ ρðun�gÞ�σnðuÞ;
from which comes un ¼ g, so that all conditions (2.5) hold.□

3. Boundary weak formulation of the contact problem

To develop a boundary variational formulation that is suitable
for the contact problem, we start with the Hilbert space defined as

V≔fvAðH1ðΩÞÞ2; v¼ 0 on ΓDg:
From Green's formula and (2.1)–(2.5) we obtain the variational
formulation as follows:Z
Ω
σðuÞ : ϵðvÞ dx¼

Z
ΓN [ΓC

σðuÞÞn � v ds; 8vAV : ð3:1Þ

As in [7,32–34], we introduce the single layer potential V, the
double layer potential K, the adjoint double layer potential K 0 and
the hypersingular integral operator W by

ðVϕÞðxÞ ¼
Z
Γ
Gðx; yÞϕðyÞ dsy; V : ðH�1=2ðΓÞÞ2-ðH1=2ðΓÞÞ2;

ðKϕÞðxÞ ¼
Z
Γ
T nyGðx; yÞϕðyÞ dsy; K : ðH1=2ðΓÞÞ2-ðH1=2ðΓÞÞ2;

ðK 0ϕÞðxÞ ¼
Z
Γ
T nxGðx; yÞϕðyÞ dsy; K 0 : ðH�1=2ðΓÞÞ2-ðH�1=2ðΓÞÞ2;

ðWϕÞðxÞ ¼ �T nx

Z
Γ
T nyGðx; yÞϕðyÞ dsy; W : ðH1=2ðΓÞÞ2-ðH�1=2ðΓÞÞ2;

where Gðx; yÞ is the fundamental solution of the two-dimensional
Lamé equation

Gðx; yÞ ¼ λþ3μ
4πμðλþ2μÞ log

1
jx�yj Iþ

λþμ
λþ3μ

ðx�yÞ � x�y
jx�yj 2

� �
;

and T n is the boundary traction operator defined by T nðuÞ≔
σðuÞjΓn.

Now, we introduce the Dirichlet-to-Neumann mapping on Γ
[31,33,34,39]:

S : ðH1=2ðΓÞÞ2-ðH�1=2ðΓÞÞ2
ujΓ↦σðuÞjΓ :
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