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a b s t r a c t

In this paper, new boundary-domain integral equations are derived for solving two- and three-
dimensional elastoplastic problems. In the derived formulations, domain integrals associated with
initial stresses (strains) are avoided to use, and material nonlinearities are implicitly embodied in the
integrand kernels associated with the constitutive tensor. As a result, only displacements and tractions
are explicitly involved in the ultimate integral equations which are easily solved by employing a mature
efficient non-linear equation solver. When materials yield in response to applied forces, the constitutive
tensor (slope of the stress–strain curve for a uniaxial stress state) becomes discontinuous between the
elastic and plastic states, and the effect of this non-homogeneity of constitutive tensor is embodied by an
additional interface integral appearing in the integral equations which include the differences of elastic
and plastic constitutive tensors. The domain is discretized into internal cells to evaluate the resulted
domain integrals. An incremental variable stiffness iterative algorithm is developed for solving the
system of equations. Numerical examples are given to verify the correctness of the proposed BEM
formulations.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The earliest work on elastoplastic boundary element method
was done by Swedlow and Cruse [1], who presented the elasto-
plastic formulations based on an extended form of Somigliana's
identity by incorporating a volume integral involving plastic
strains (the initial strains). Then two- and three-dimensional
elastoplastic algorithms were implemented [2–4]. However, it
emerged that strongly singular nature of the volume integral
involving initial strains in the interior stress equations had been
overlooked. The corrected formulations were published by
Mukherjee [5], Bui [6], Telles and Brebbia [7]. By using a similar
initial strain formulation, Kumar and Mukherjee [8] implemented
the first viscoplastic analyses. The first initial stress formulation in
the boundary element method was developed by Banerjee and
Cathie [9]. Later, an advanced formulation of the boundary
element method was developed by Raveendra [10], Banerjee
et al. [11], Banerjee and Raveendra [12] for inelastic analysis based
on the earlier initial stress approach.

One important task in nonlinear BEM is the solution strategy to
the system of equations. Several algorithms using domain dis-
cretization methods have been developed. More often than not the

algorithms are ‘explicit’ methods as described in detail by Telles
[13] and Banerjee [14]. These solution algorithms can be roughly
divided into two groups, i.e., the initial strain approach [2,3,7,8,15–
17] and the initial stress approach [9,10,18–23].

The convergence of ‘explicit’ methods is slow, so implicit
solution schemes were investigated, on account for their uncondi-
tional stability [24–28]. Among these works, Bonnet and Mukher-
jee [24], Bonnet et al. [29] first applied the consistent tangent
operator method to the boundary element method. This method,
which was proposed by Simo and Taylor [30] in the finite element
method context, exploits the quadratic rate of convergence which
can be achieved by utilizing consistent elastoplastic constitutive
relations in the Newton–Raphson iterative process. Dong [31]
extended the consistent tangent operator method to axisymme-
trically elastoplastic problems. Although this iterative method is
relatively easy to code, it requires considerable computer memory.
This is because the system of equations is formulated in terms of
strain increments which have six degrees of freedom at each node
for 3D problems.

A different type of solution strategy (incremental variable
stiffness) has been successfully demonstrated by Banerjee and
his co-workers [10,14,21,32,33]. In this scheme, the internal
variables are eliminated, by expressing them in terms of boundary
variables, and consequently no iteration is needed if small incre-
ments are used. Based on this formulation, Chopra and Dargush
[20] described a Newton–Raphson solution algorithm for solving
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the non-linear system of equations, in which both the boundary
unknowns and plastic multipliers were used as primary unknowns
of the system of equations. Gao and Davies [26] proposed a novel
incremental variable stiffness iterative algorithm based on the
Newton–Raphson iterative scheme. In this algorithm, the plastic
multipliers (only) are used as the primary unknowns, with the
advantage that the number of degrees of freedom is equal to the
number of yield nodes in the current increment. Consequently,
both computational time and computer memory can be substan-
tially reduced. Based on this method, a self-contained Fortran code
for solving elastoplastic problems was published in the book [34],
which is the first elastoplastic code entering the public area.

Deng [35] presented a nonlinear complementarity approach to
solve elastoplastic problems. In the application of rolling engineer-
ing analysis, Xiao [36,37] applied boundary element method with
initial stress to evaluate three dimensional frictional contact
problems, and elastoplastic material behavior is taken into account
by means of the initial stress formulation. By applying fast multi-
pole method (FMM) to BEM, Wang and Yao [38] proposed a fast
multipole boundary element method for the analysis of two-
dimensional elastoplastic problems.

It is worth mentioning that the previous boundary element
formulations for solving elastoplasticity problems were all based
on initial stress or initial strain approaches. The existence of
domain integrals associated with unknown initial stresses (strains)
makes it difficult to formulate system of equations with fewer
unknown variables. Especially, in solving multi-medium elasto-
plastic problems, the widely used multi-domain boundary ele-
ment method (MDBEM) [39] is very difficult to be directly
implemented based on the existing initial stress (strain) integral
equations. Also it is difficult to couple with other numerical
methods.

In this paper, a new method for solving elastoplastic problems
using BEM is developed based on a combination of source point
isolation technique [40] and interface integral method [41,42]. The
feature of the method is that no initial stresses or initial strains are
explicitly appeared in the integral equations and only displace-
ments and tractions are explicitly involved as the basic physical
variables. Material nonlinearities are implicitly included in the
integral kernels associated with the incremental elastoplastic
constitutive tensor. Comparing to the conventional methods, the
proposed method has the advantages of convenient to solve multi-
medium elastoplastic problems and easy to couple with other
numerical methods. A novel effective incremental variable stiff-
ness interactive algorithm is developed for solving the non-linear
system of equations based on the Newton–Raphson iterative
scheme. Numerical examples are given to verify the correctness
of the proposed BEM formulations.

2. Constitutive relations of rate-independent elastoplasticity

Unlike the linear case, we must deal with incremental quan-
tities, denoted by the superposed period. In elastoplastic deforma-
tion, total strain increments can be decomposed into elastic and
plastic parts as follows:

_εkl ¼ _εeklþ _εpkl ð1Þ

The incremental stress–strain response can then be written in
the form

_σij ¼De
ijkl _ε

e
kl ¼De

ijklð_εkl� _εpklÞ ð2Þ

where _εkl is the total strain increment; _εpkl is the plastic strain
increment; and De

ijkl is the fourth order elastic constitutive tensor

with the following form:

De
ijkl ¼ G

2ν
1�2ν

δijδklþδikδjlþδilδjk

� �
ð3Þ

in which G is the shear modulus; ν is Poisson's ratio and δij
represents the Kronecker delta.

In the classical (flow) theory of plasticity, the general elasto-
plastic constitutive relations are based on Drucker's postulate, e.g.
[43,44]. However, Drucker's postulate is only suitable for stable
materials under stress control with perfect plasticity as a limiting
case [45]. In this paper, the elastoplastic constitutive relationships
based on Il’iushin's postulate [46] are adopted, which is suitable
for both stable and unstable behaviour. For simplicity, the follow-
ing yield function is considered:

f ðσij; εpÞ ¼ f ðσijÞ�kðεpÞ ¼ 0 ð4Þ
where f ðσij; εpÞ is the yield function determined by current state of
stress and plastic deformation history; εp is the cumulated equiva-
lent plastic strain; f ðσijÞ is a function of current state of stress, the
equivalent uniaxial stress; and kðεpÞ is the uniaxial yield stress.
Concrete forms of εp, kðεpÞ and f ðσijÞ can be found in Ref. [34].

The Il’iushin's postulate states that the work done in a closed
strain cycle is non-negative and yields the following results [47]:

_εpij ¼ _λ
∂f
∂σij

ð5Þ

where _λ is the non-negative plastic multiplier increment.
Making the use of consistency condition and hardening rules,

the expression for the plastic multiplier can be derived from
Eqs. (1) to (5):

_λ¼ 1
ψ

∂f
∂σij

_σeij ð6Þ

Then, substituting Eqs. (6) into (5), and the result into Eq. (2), the
elastoplastic constitutive stress–strain relation can be derived as

_σij ¼Dep
ijkl _εkl ð7Þ

where _σij is the real stress increment, _εkl is the total strain
increment, and Dep

ijkl is the tangent constitutive tensor with the
following form [34]:

Dep
ijkl ¼De

ijkl�
1
ψ
De
ijmn

∂f
∂σmn

∂f
∂σpq

De
pqkl ð8Þ

where

ψ ¼ ∂f
∂σkl

De
kljs

∂f
∂σjs

þHhε;λ ð9Þ

in which hε;λ is the partial derivative of internal variable hε with
respect to plastic multiplier λ, which has the following form:

hε;λ ¼ c0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∂f
∂σij

∂f
∂σij

s
ð10Þ

where c0 is a magnitude of plastic strain increment.
If we set

dfij ¼De
ijkl

∂f
∂σkl

ð11Þ

Eq. (8) can be rewritten as follows:

Dep
ijkl ¼De

ijkl�Dp
ijkl ð12Þ

where

Dp
kljs ¼

1
ψ
dfkld

f
js ð13Þ

In Eqs. (8)–(13), H is the local slope of the uniaxial stress–
plastic strain curve, which can be determined experimentally;

W.-Z. Feng et al. / Engineering Analysis with Boundary Elements 61 (2015) 134–144 135



Download	English	Version:

https://daneshyari.com/en/article/512299

Download	Persian	Version:

https://daneshyari.com/article/512299

Daneshyari.com

https://daneshyari.com/en/article/512299
https://daneshyari.com/article/512299
https://daneshyari.com/

