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a b s t r a c t

In this paper, a multi-frequency calculation technique based on least square approximate is introduced
into the boundary integral equation method (BIEM) for 3D acoustics problems. The quadrilateral constant
elements are used in multi-frequency calculation technique. In this method, the exponential term is
expanded only when the source point and the field point locate in the same element. Thus, all the
diagonal entries in system matrices are independent of the wave number. As a result, the integrals for the
diagonal entries in all the final matrices (different frequencies) only are calculated once. Comparing with
the original BIEM, the storage requirement for the presented method only adds O(n) (n is the total
number of the elements). In addition, the presented method can be used to deal with the full frequency
acoustic problems. Numerical examples show the accuracy and efficiency of the presented technique.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary integral equation method (BIEM) has the
advantages comparing with finite element method (FEM) due to
the semi-analytic nature, the reductions of the dimension, and the
incomparable superiority for solving infinite problems. Hence, it
has been a very powerful numerical technique for exterior
acoustics problems.

For the acoustic problems governed by Helmholtz equation, the
first effort of using the integral equation was made by Jaswon and
Symm [1]. Chen and Schweikert [2] solved 3-D sound radiation
problems by using Fredholm integral equation of the second kind.
Chertock [3] predicted sound radiation from vibrating surfaces
using integral equation. However, there is a drawback that only
using conventional boundary integral equation method (CBIE)
formulation can not get unique solution for the exterior acoustic
problems governed by the Helmholtz equation at the eigen-
frequencies which are associated with the interior problems [4,5].
These eigenfrequencies which are called fictitious eigen-
frequencies has no physical significance for the exterior problems
under investigation. In order to deal with this defect, the com-
bined Helmholtz integral equation formulation (CHIEF) is pro-
posed by Schenck [4]. In the method, some additional Helmholtz
integral relations were added in the interior domain. This

additional relation leads to an over-determined system of equa-
tions, which can be solved using a least-squares technique. CHIEF
has been widely used for acoustic scattering and radiation pro-
blems. Furthermore, lots of improvements have been made by
several researchers [6–9].

Due to the frequency dependent character of the coefficient
matrices in the BIEM, all the components in the coefficient
matrices should be calculated repeatedly for different frequencies,
the calculation process would be very time consuming if there are
large amounts of frequency steps. Seybert [10] had found that it
take about 100 min to compute the surface acoustical pressure of a
pulsating sphere in the range of ka 10≤ (k is the wave number, a is
the sphere radio). Kirkup [11] had shown that it cost more than
100 h to determine the sound radiation of a shaft box of
0.25 m 0.4 m 0.6 m× × in the range of 400–2400 Hz. Many tech-
niques have been explored to solve the multi-frequency acoustic
problems. The frequency interpolation technique was proposed in
[12,13]. Wu [14] presented a Green's function interpolation tech-
nique. The frequency interpolated transfer function was proposed
by Estorff [15]. The matrix interpolation and solution iteration
process was developed in [16]. The frequency response function
approximation was proposed in [17]. The sine and cosine func-
tions, which are included in the complex exponential function, are
approximated by polynomials in [18,19].

Although those methods [18,19] can deal with the multi-fre-
quency acoustic problems, the quantity of the required storage is
several times of that in the original BIEM. And the frequencies
which can be calculated are limited to the low frequencies in
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[18,19]. To avoid these faults, a new technique is introduced in the
BIEM to analyze the 3D multi-frequency acoustic problems in this
paper. The CHIEF is employed to avoid non-unique solution in
BIEM for exterior acoustic problems in this paper. The exponential
terms are approximated by a quadratic polynomial, which is
obtained by least-squares approach. In our method, the diagonal
entries in the final global coefficient matrices at any frequency can
be simply formed by a summation of the frequency independent
matrices. The integral computation of other entries can be carried
out with the 1 point Gauss integral. The storage requirement only
adds O(n). The computational effort spent on the singular and
near-singular integration is saved. Therefore, the onerous numer-
ical integration is not involved. At the same time, to meet the
requirement of the precision in BIEM for acoustic problems, the
maximal element size should satisfy: Size /6λ< . Once a maximal
element size l and some frequency f0 meet this requirement, all
the acoustic problems with frequency below f0 can be evaluated
by this method.

This paper is organized as follows. Section 2 mainly reviews the
BIEM for acoustic problems. In Section 3, the multi-frequency
calculation technique is given followed by numerical examples in
Section 4. The paper ends with conclusions and discussions on
future work in Section 5.

2. Review of the BIEM

In 2D or 3D spaces, the governing equation for acoustic wave
problem is the Helmholtz equation which can be written as:

x k x x E0, 12 2ϕ ϕ∇ ( ) + ( ) = ∈ ( )

in which x is the field point, E is the acoustic domain, xϕ ( ) denotes
the total sound pressure at x, 2∇ denotes the Laplace operator,
k f c2 /π= denotes the wave number, f is the frequency, c is the
speed of sound in the acoustic medium.

The boundary conditions for the governing equation of acoustic
wave problems can be described as:
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ρ is the mass density. vn is the normal velocity. n is the outward
normal. Z denotes the specific acoustic impedance. The quantities
with over bars indicate given values. i 1= − . S is the boundary of
the domain. For the exterior acoustic problem, the Sommerfeld
radiation condition must be satisfied at infinite field. It is:
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where R is the distance from a fixed origin to a general field point.
ϕ is the radiated wave in a radiation problem or the scattered wave
in a scattering problem.

The integral representation of the Helmholtz equation is:
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holtz problems, in which r¼ |P�P0| is the distance between source
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0ϕ ( ) denotes a prescribed
incident wave but it does not exist in radiation problems.

Coefficient c(P0) is described as:
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where E is the exterior region (acoustic medium). S denotes the
boundary which is smooth around P0. B is the interior region (a
body or scatterer).

The discretized form of the Eq. (4) can be obtained as the fol-
lowing forms:
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here bi comes from the incident wave for the scattering pro-
blems, N denotes the total number of nodes, and
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here the Sj denotes the element j, and if the α th node in the
element j coincides with the ith node, P P, 1;iσ ( ) =α else

P P, 0.iσ ( ) =α

3. Multi-frequency calculation technique

In this section, a multi-frequency calculation technique is
described. As we all know, the final global coefficient matrices of
acoustic problems in BIEM have the wave number dependent
character, therefore, the onerous numerical integration is intro-
duced into the computation. To avoid this shortcoming, the wave
number should be separated from the fundamental solution

G P P k, , e
r0 4

ikr
( ) =

π
.

Firstly, we review the method proposed in Li [18]. Li employed
the least-squares approximating polynomial for sin(x) and cos(x)
on a interval x∈[0, 5] in the following forms:
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Thus, the exponential function eikr can be approximated by Eq.
(8). In Li's method, the kL is set as kL0 5< ≤ , L is the max length of
structure. The numerical integration in Li's method is only con-
fined to a frequency-independent part and the obtained boundary
element global matrices are frequency independent. The final
global coefficient matrices can be simply formed by a summation
of the frequency-independent global matrices. However, the
approximating for eikr in Li's method equal to a 7 order polynomial,

X. Wang et al. / Engineering Analysis with Boundary Elements 61 (2015) 282–286 283



Download English Version:

https://daneshyari.com/en/article/512313

Download Persian Version:

https://daneshyari.com/article/512313

Daneshyari.com

https://daneshyari.com/en/article/512313
https://daneshyari.com/article/512313
https://daneshyari.com

