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The traditional numerical manifold method (NMM) has the advantage of simulating a continuum and a
discontinuum in a unified framework based on a dual cover system. However, since an implicit time
integration algorithm is used, the computational efficiency of the original NMM is very low, especially
when more contacts are involved. The present study proposes an explicit version of the NMM. Since a
lumped mass matrix is used for the manifold element, the accelerations by the corresponding physical
covers can be solved explicitly without forming a global stiffness matrix. The open-close iteration is still
applied to ensure computational accuracy. The developed method is first validated by two examples, and
a highly fractured rock slope is subsequently simulated. Results show that the computational efficiency
of the proposed explicit NMM has been significantly improved without losing the accuracy. The explicit
NMM is more suitable for large-scale rock mass stability analysis and it deserves to be further developed

Computational accuracy

for engineering computations in rock engineering.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete element methods have the advantage of simulating
discrete block systems under different loading conditions, which
have been widely applied in rock engineering. There are two major
representatives in the discrete element method family. In the
distinct element method (DEM hereafter) explicit time integration
scheme based on finite difference principles is adopted [1]. The
DEM has been developed into the commercial 2D code UDEC, 3D
code 3DEC and the particle versions PFC2D and PFC3D by Cundall
and his colleagues [2-4], which has been enjoying a wide
application range in rock engineering. The main benefit of the
DEM is that its computational efficiency is high due to its explicit
time integration nature. The low computational cost of DEM is
mainly because the explicit time integration algorithm does not
involve the solution of coupled system equation, so fewer compu-
tations are needed per time step [5]. However, it has also been
argued that the accuracy of simulated results may be sacrificed in
some particular cases. To ensure numerical stability, a DEM
simulation requires that the time step must be small enough.

On the other hand, the discontinuous deformation analysis
(DDA) derived based on the variational method takes the benefit
of the implicit time integration method [6,7]. The formulation of
DDA is similar to that of the finite element method (FEM). Due to
its implicit time integration, the DDA is unconditionally stable and it
is expected to accommodate considerably large time steps.
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Additional features include the simplex integration method, which
is closed-form integration for the element and block stiffness
matrix, and the open-close iteration (OCI) contact algorithm. The
DDA method has emerged as an attractive approach because its
advantage in simulating a discrete system cannot be replaced by
continuum-based methods or explicit DEM formulations. Since the
initiation of the DDA, many developments and applications have
been implemented by Ohinishi et al. [8], Hazator et al. [9], Zhao
et al. [10], and others. The major drawback of DDA is that very high
computational cost is required, especially when the system contains
a huge number of discrete blocks and contacts. The convergence
efficiency of the OCI for a complex discrete system is also not clear.
This has been a long time challenge for the development of the 3D
DDA method. A number of articles on DEM and DDA have been
published; detailed mathematical formulations and discussions of
the DEM and DDA can be found in the state-of-the-art articles by
Jing [11,12] and the book by Jing and Stephansson [13].

The numerical manifold method (NMM) [14,15] involved in this
study is an evolution of the DDA, which combines the merits of
both FEM and DDA. The NMM inherits all the attractive features of
the DDA, such as the implicit time integration scheme, the contact
algorithm and the minimum potential energy principle. It adopts
a dual cover system, i.e. a mathematical cover overlapping the
domain of interest and a physical cover which considers the
contained discontinuities and physical boundaries such as material
joints, voids, interfaces and aggregates in a unified manner. In the
past two decades, many developments have been carried out to
improve the performance of the NMM in discontinuous stress
problems [16,17], crack propagation problems [18-20], high order
NMM theory [21,22], etc. The recent developments of the NMM
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have been reviewed by Ma et al. [16]. It has been recognized that
the NMM has great potential to be further developed in simulating
massive discontinuities. While possessing the benefits of the FEM
and DDA, the NMM suffers from the high computational costs
arising from the inherent implicit time iteration scheme and the
OClIs for contacts. The implicit time integration algorithm involves
the solution of a global system equation, in which the computa-
tional cost increases dramatically with increasing of degrees of
freedom (DOFs) of the system since the large-scale simultaneous
algebraic equations must be solved in each time step. The OCI
requires no-tension and no-penetration at all contacts, which
additionally increases the computation cost in achieving a con-
vergence state at each time step. When the tolerance of the
penetration distance is restricted to a small quantity the time step
in the OCI has to be correspondingly reduced, which erases the
benefit of using a large time step in an implicit time integration
algorithm.

It has been proved that an explicit time integration scheme
yields as accurate results as an implicit one if the time step is small
enough [5,23]. For a discrete system, the no-tension and no-
penetration requirement determines the accuracy of the simula-
tion results. Considering that the computational accuracy is as
important as the computational efficiency for engineering pro-
blems, a proper balance between the high computational effi-
ciency based on an explicit time integration scheme and the high
accuracy based on an appropriate OCI process is highly demanded.

In the present study, a modified version of the NMM based on
an explicit time integration algorithm is derived. The original
NMM based on displacement method is revised into an explicit
formulation of a force method. The governing equations are built
up on the dual cover system and the global stiffness matrix used
in the traditional NMM is no longer necessary. A diagonal mass
matrix is derived for the dual cover system which makes the
solution highly efficient at each time step. The OCI is still
employed; however, the relative cost is much lower because of
the explicit time integration scheme without solving of simulta-
neous algebraic equations at each step and the smaller penetration
incurred due to a smaller time step used. The developed method is
validated by two examples: one static problem of a continuous
simply supported beam, and one dynamic problem of a single
block sliding down on a slope. Results showed that accuracy of the
explicit numerical manifold method (ENMM) can be ensured
when the time step is small for both the continuous and the
contact problems. A highly fractured rock slope is subsequently
simulated as well. It is shown that the computational efficiency of
the proposed ENMM can be significantly improved, without losing
the accuracy, compared with the implicit version of the NMM. The
ENMM is more suitable for large-scale rock mass stability analysis
and it deserves to be further developed for engineering computa-
tions in rock engineering.

2. Fundamental theory of NMM

The traditional NMM is based on the dual cover system, which
consists of mathematical covers (MCs), physical covers (PCs) and
manifold elements (MEs). The MCs are user-defined small patches,
and their union covers the entire problem domain. The PCs are
the subdivision of the MCs by the physical features such as the
external boundaries and the internal discontinuities, and each PC
inherits the partition of unity function from its associated MC. The
ME is defined as the common region of several PCs. On each ME,
partition of unity functions is used as well to assemble all the local
functions associated with the PCs to offer a global approximation.

For a two-dimensional problem a regularly structured mesh is
employed in the NMM to form the cover system, which is similar

to that in the FEM. As shown in Fig. 1, the structured mesh-based
cover system is built on a triangular finite element mesh, in which
each node is termed as a ‘star’. The union of six triangles sharing a
common ‘star’ forms a hexagonal MC. For the continuous media,
each PC coincides with the corresponding MC; thus each MC
generates a PC, in which a local function is assigned. Each
triangular element e is constructed by the associated three PCs
starred at its three nodes. When the discontinuities (i.e. ® and @)
are taken into account in the problem domain, a MC can be sub-
divided into two and more PCs share the original ‘star’ (i.e. 2 PCs
and 4 PCs). If one MC is not or partly cut by the discontinuities,
only one PC is constructed. In this case, the refining mesh
technique and cutting off the discontinuity tips by the element
edges are usually applied to avoid singular matrices occurrence to
the utmost extent. For the discontinuities problems, the new
generated PCs will be reallocated local functions and updated
new indices. Since each MC possesses two DOFs, each element
formed by the three overlapping PCs has six DOFs.

Here, a simple example is given to illustrate the constructions
of the PCs and MEs on the cover system as plotted in Fig. 2. In the
continuum as shown in the left of the figure two interconnected
MEs e; and e; share two PCs indexed (2) and (3), in which e; is
constructed by the associated three PCs indexed by (1), (2) and (3),
and e; is constructed by the PCs indexed by (2), (4) and (3),
respectively. Since the global approximation involves an assembly
of a global stiffness matrix, the interaction between e; and e; can be
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Fig. 1. Structured mesh-based cover system in the NMM.
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Fig. 2. Construction of manifold elements on the cover system: (a) continuous
elements and (b) discontinuous elements.
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