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a b s t r a c t

In the present paper, the inverse Cauchy problems of Laplace equation and biharmonic equation are
transformed, by using the method of fundamental solutions (MFS) and the Trefftz method (TM), to the
systems of linear equations for determining the expansion coefficients. Then, we propose three different
conditioners together with the conjugate gradient method (CGM) to solve the resultant ill-posed linear
systems. They are the post-conditioning CGM and the pre-conditioning CGM based on the idea of
equilibrated norm for the conditioned matrices, as well as a minimum-distance conditioner. These
algorithms are convergent fast and accurate by solving the inverse Cauchy problems under random noise.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The inverse Cauchy problem is to solve the boundary value
problem of elliptic type partial differential equations given by an
incomplete set of Cauchy data on a partial portion of the boundary,
which is a well-known highly ill-posed problem, and many
numerical methods have been developed to solve this sort
problem for its possible engineering applications. In the past,
almost in the checks to the ill-posedness of the inverse Cauchy
problem, the illustrating examples have led to that the inverse
Cauchy problem is actually severely ill-posed. Ben Belgacem [1]
has provided an answer to the ill-posedness degree of the inverse
Cauchy problem by using the theory of kernel operators. The
foundation of his proof is the Steklov–Poincaré approach intro-
duced in [2]. When the inverse Cauchy problem is defined in an
arbitrary plane domain we can use the method of fundamental
solutions [3–7], or the Trefftz method [8]. No matter which
method is used we eventually need to solve an ill-posed linear
equations system to determine the expansion coefficients.

Nevertheless the conjugate gradient method (CGM) is a compo-
site of simple and elegant ideas, it is the most prominent iterative
method for solving positive definite linear equations system. How-
ever, it is vulnerable to noisy disturbance on an ill-posed system. In
this paper we propose equilibrated and minimum-distance condition-
ing conjugate gradient method to solve the following ill-posed

linear system:

Bx¼ b0; ð1Þ

where detðBÞa0 and BARn�n may be an ill-conditioned, and
generally unsymmetric coefficient matrix. The solution of such an
ill-posed system of linear equations is an important issue for many
physical and engineering problems. In practice, in the linear
equations which arise in scientific problems, the data b0 are rarely
given exactly; instead, noises in b0 are unavoidable due to the
measurement error. Therefore, we may encounter the problem that
the numerical solution of an ill-posed linear equations system may
deviate from the exact one to a great extent, when B is
ill-conditioned and b0 is polluted by noise.

It is well known that the direct methods and the iterative
methods can be adopted to solve linear system (1). The former is
widely employed when the order of the coefficient matrix B is not
too large and is usually regarded as robust methods. The memory
and the computational requirements for solving a large scale
linear system may seriously challenge the most efficient direct
solution methods available today. Currently, it is popular to use an
iterative method to solve a large scale linear system. The reason is
that iterative methods are easier to implement efficiently on high
performance computers than direct methods. The application of
iterative methods to determine meaningful approximate solution
of Eq. (1) has previously been considered by applying the con-
jugate gradient method (CGM) to solve the normal equation
associated with non-symmetric linear system (1); see Hanke [9]
and Saad [10] and references therein.
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The approaches to the ill-posed linear problems can be categorized
into three main classes: (a) regularizations of Eq. (1), (b) regularized
algorithms to solve Eq. (1), and (c) a better pre-conditioning and/or
post-conditioning to Eq. (1). In the splitting method, the matrix
preconditioning technique is based on an approximation of the inverse
of the coefficient matrix, where we assume that B¼M�N, and
associate it with an iterative method:

xkþ1 ¼ xkþM�1ðb0�BxkÞ: ð2Þ

HereM�1 plays the role of a preconditioner. The moreM resembles B,
the faster the iterative method will converge. One of the natural and
simplest ways for the choice of the preconditioner is a diagonal of the
coefficient matrix, such as the Jacobi method. However, it usually
makes no remarkable reduction of the iteration number.

The scaling of linear algebraic equations is an important topic
and has a long history for the development of scaling techniques.
A matrix is equilibrated if all its rows or columns have the same
norm, and under this condition the matrix is better conditioned.
Really, there are theories of optimal scaling proposed by Bauer [11],
van der Sluis [12], Watson [13], and Gautschi [14]. The problem
is the search for some suitable diagonal matrices D1 and D2,
such that the condition number of D1BD2 is reduced as much as
possible [15,16].

The CGM was used by Háo and Lesnic [17] and Jin [18] to solve
the inverse Cauchy problem for Laplace's equation. This paper is
a continuation of these efforts, which is organized as follows. The
conjugate gradient method (CGM) and a preconditioned CGM for
solving a positive definite linear equations system are introduced
in Section 2. In Section 3 we describe three simple and direct
equilibrated and minimum-distance conditioner methods for the
solution of an ill-posed linear equations system. Section 4 devotes
to use the post-conditioning CGM (PoCGM), pre-conditioning CGM
(PrCGM) and the minimum-distance CGM (MDCGM) proposed in
Section 3 together with the method of fundamental solutions
(MFS) and the Trefftz method (TM) to solve inverse Cauchy
problems of Laplace equation and biharmonic equation. Finally,
the conclusions are drawn in Section 5. As we know the equili-
brated and minimum-distance conditioners have not yet been
exploited in the context of inverse Cauchy problems.

2. A preconditioned conjugate gradient method

A measure of the ill-posedness of Eq. (1) can be performed by
using the condition number of B [19]:

condðBÞ ¼ ‖B‖F‖B�1‖F ; ð3Þ

where ‖B‖F denotes the Frobenius norm of B. Throughout this
paper, the Euclidean norm is used for vector and the Frobenius
norm is used for matrix, unless specified otherwise.

For every matrix norm J�J we have ρðBÞr JBJ , where ρðBÞ is
a radius of the spectrum of B. The Householder theorem states
that for every ε40 and every matrix B, there exists a matrix norm
JBJ depending on B and ε such that JBJrρðBÞþε. Anyway, the
spectral condition number ρðBÞρðB�1Þ can be used as an estima-
tion of the condition number of B by

condðBÞ ¼maxsðBÞjλj
minsðBÞjλj

; ð4Þ

where sðBÞ is the collection of all the eigenvalues of B. Turning
back to the Frobenius norm we have

‖B‖Fr
ffiffiffi
n

p
max
sðBÞ

jλj: ð5Þ

In particular, for the symmetric case ρðBÞρðB�1Þ ¼ ‖B‖2‖B�1‖2.

Instead of Eq. (1), we can solve the normal equation

Cx¼ b; ð6Þ
where

C≔BTB40; ð7Þ

b≔BTb0: ð8Þ
The conjugate gradient method (CGM), which is used to solve

Eq. (6), is summarized as follows [20]:

(i) Give an initial x0.
(ii) Calculate r0 ¼ b�Cx0 and p1¼r0.
(iii) For k¼1,2,…, we repeat the following iterations:

αk ¼
‖rk�1‖2

pT
kCpk

;

xk ¼ xk�1þαkpk;

rk ¼ b�Cxk;

βk ¼
‖rk‖2

‖rk�1‖2
;

pkþ1 ¼ rkþβkpk: ð9Þ
If xk converges according to a given stopping criterion, such
that,

Jrk Joɛ; ð10Þ
then stop; otherwise, go to step (iii). The norm used for rk is
the Euclidean norm.

We can evaluate the cost of computing the approximate
solution xk by using the CGM with k steps. At each iterative step
the CGM requires the matrix–vector multiplication of n�n-matrix
and n-vector two times and the inner products of two n-vectors
two times. This portion is with totally k(2nþ2) multiplications.
Dividing by the total number of steps k we can obtain that each
step requires 2nþ2 multiplications on the average. It is known
that the CGM converges within n steps. So we can say that the
computational complexity of CGM is Oðn2Þ.

It is well known that the convergence speed of CGM depends
on the distribution of the eigenvalues of the coefficient matrix C as
shown by the following formula [10,21]:

Jxk�xn Jr2
ffiffiffiffiffi
κ2

p �1ffiffiffiffiffi
κ2

p þ1

� �k

Jx0�xn J ; ð11Þ

where xn is the exact solution of Eq. (6), and κ2 ¼ ‖C‖2‖C�1‖2.
When the coefficient matrix is typically extremely ill-condi-

tioned, the convergence of CGM can be unacceptably slow. In this
case, the CGM is not competitive without a good preconditioner.
That is, the preconditioning technique is a key ingredient for the
success of CGM in applications. The idea of preconditioning
technique is based on the consideration of the linear system with
the same solution as the original equation. The problem is that
each preconditioning technique is suited for a different type of
problem. Until now no robust preconditioning technique appears
for all or at least much types of problems. Finding a good
preconditioner to solve a given large scale linear system is often
viewed as a combination of art and science.

To improve the convergence speed of iterative methods, an
appropriate preconditioner can be incorporated. Based on the
survey by Benzi [22], a good preconditioner should meet the
following requirements: (1) the preconditioned system should be
easy to solve, and (2) the preconditioner should be cheap to
construct and apply. In order to increase the convergence speed of
CGM, we require to reduce the condition number of C as shown in
Eq. (11). For the purpose of comparison the preconditioned CGM
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