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a b s t r a c t

In this paper, we consider a Cauchy problem of one-dimensional time fractional diffusion equation for
determining the Cauchy data at x¼1 from the Cauchy data at x¼0. Based on the separation of variables
and Duhamel's principle, we transform the Cauchy problem into a first kind Volterra integral equation
with the Neumann data as an unknown function and then show the ill-posedness of problem. Further,
we use a boundary element method combined with a generalized Tikhonov regularization to solve the
first kind integral equation. The generalized cross validation choice rule is applied to find a suitable
regularization parameter. Three numerical examples are provided to show the effectiveness and
robustness of the proposed method.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fractional diffusion equations have attracted wide attentions in
recent years which can be used to describe anomalous diffusion
phenomena instead of classical diffusion procedure. Time fractional
diffusion equations are deduced by replacing the standard time
derivative with a time fractional derivative and can be used to
describe superdiffusion and subdiffusion phenomena [34,19,20,
41,1,32]. Indeed, fractional diffusion equations have numerous appli-
cations in nanotechnology, viscoelasticity, hereditary solid mech-
anics, chemistry and biochemistry, signal and image processing, and
other fields in engineering [2]. The direct problems, i.e., initial value
problem and initial boundary value problems for time fractional
diffusion equations have been studied extensively in recent years, for
instances, on maximum principle [17], on some uniqueness and
existence results [16,31], on numerical solutions by finite element
methods [8] and finite difference methods [40,14,22,33], on exact
solutions [38,19,18].

However, in some practical situations, a part of boundary data,
or initial data, or diffusion coefficients, or source term may not be
given and we want to find them by additional measured data
which will give rise to some fractional diffusion inverse problems.
The early papers on inverse problems were provided by Murio in
[21,23,24] for solving the sideways fractional heat equations by
mollification methods. After that, some works on fractional inverse
problems have been published. In [3], Cheng et al. considered an

inverse problem for determining the order of fractional derivative
and diffusion coefficient in a fractional diffusion equation and gave
a uniqueness result. In [15], Liu et al. solved a backward problem
for the time-fractional diffusion equation by a quasi-reversibility
regularization method. Zheng et al. in [43,44] solved the Cauchy
problems for the time fractional diffusion equations on a strip
domain by a Fourier truncation method and a convolution reg-
ularization method. Qian in [29] used a modified kernel method to
deal with a sideways fractional equation inverse problem. In
[42,25,31,37,4,11,12], some inverse source problems for various
fractional diffusion equations were investigated. Furthermore, the
nonlinear fractional inverse problems have been considered
recently in [30,9]. To our knowledge, the study of inverse probl-
ems for fractional differential equations is in a very early devel-
opmental stage.

In this paper, we consider the following Cauchy problem for a
time fractional diffusion equation:

0∂
α
t u¼ uxx; 0oxo1; 0otoT ;

uð0; tÞ ¼ hðtÞ; 0rtrT ;

uxð0; tÞ ¼ qðtÞ; 0rtrT ;

uðx;0Þ ¼φðxÞ; 0rxr1;

8>>>><
>>>>:

ð1:1Þ

where u is the solute concentration and 0∂αt u is the Caputo time-
fractional derivative of order α defined in [27] by

0∂
α
t u¼ 1

Γð1�αÞ
Z t

0

∂uðx; sÞ
∂s

ds
ðt�sÞα; 0oαo1; ð1:2Þ

where Γð�Þ is the Gamma function. The main aim in this study is to
recover the Dirichlet data uð1; tÞ and the Neumann data uxð1; tÞ in
the finite time period ½0; T �.
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For this Cauchy problem, one can suppose that the solute
concentration and spread velocity of pollution in soil at one end
of a finite distance are not available to be measured since this end
is far away or inaccessible, however the data of solute concentra-
tion and spread velocity can be obtained at another end. Our
propose is to determine the missing data on the inaccessible end
from the measured data on the accessible end. This is the physical
motivation for considering the Cauchy problem (1.1).

The Cauchy problem mentioned above is an ill-posed problem,
refer to Remark 2.7 in Section 2. That means the solution (if exists)
does not depend continuously on the given data and any small
perturbation in the given data may cause large change to the
solution. However under an additional priori assumption to the
solution, Xu et al. in [39] proved firstly a conditional stability for a
special fractional derivative order α¼ 1=2. From which we know
the solution of problem (1.1) is unique for this special case α¼ 1=2.
As for a general αAð0;1Þ, the uniqueness is still open.

In this paper, we focus on numerical solution for problem (1.1)
with a general order α. A generalized Tikhonov regularization
method based on a boundary element method is used to deter-
mine the Neumann data and the Dirichlet data at x¼1.

Our paper is divided into five sections. In Section 2, we transform
the Cauchy problem (1.1) into a Volterra boundary integral equation
by separation of variables and Duhamel's principle. In Section 3, we
propose a regularized method based on boundary element discreti-
zation for recovering a stable approximation to uxð1; tÞ. The compu-
tational formulation for recovering uð1; tÞ is also provided. Numerical
experiments for three examples are investigated in Section 4. Finally,
we give a conclusion in Section 5.

2. Boundary integral equation

Throughout this paper, we use the following definitions and
propositions, see [10,27].

Definition 2.1. Let z(t) be absolutely continuous on ½a; b�. For
0oαo1, the Caputo fractional derivative a∂αt zðtÞ and the Rie-
mann–Liouville fractional derivative aD

α
t zðtÞ can be defined in the

forms

a∂
α
t zðtÞ ¼

1
Γð1�αÞ

Z t

a

z0ðsÞ
ðt�sÞα ds; aotob; ð2:1Þ

and

aD
α
t zðtÞ ¼

1
Γð1�αÞ

∂
∂t

Z t

a

zðsÞ
ðt�sÞα ds; aotob; ð2:2Þ

respectively.

Proposition 2.2. Let z(t) be absolutely continuous on ½a; b�. Then the
Caputo fractional derivative a∂αt zðtÞ and the Riemann–Liouville frac-
tional derivative aD

α
t zðtÞ exist almost everywhere on ½a; b�, there is a

relationship between the Caputo fractional derivative and the Rie-
mann–Liouville fractional derivative

aD
α
t zðtÞ ¼

1
Γð1�αÞ

zðaÞ
ðt�aÞαþa∂

α
t zðtÞ; aotob:

Lemma 2.3. For 0oαo1 and f ðtÞAC1½0; T�, we have

0D
1�α
t 0∂

α
t f ðtÞ ¼ f 0ðtÞ: ð2:3Þ

Definition 2.4. The generalized Mittag–Leffler function is defined
by

Eα;βðzÞ ¼ ∑
1

k ¼ 0

zk

ΓðαkþβÞ ð2:4Þ

where α40, βAR.

Proposition 2.5. Let λ40, then we have

d
dt
Eα;1ð�λtαÞ ¼ �λtα�1Eα;αð�λtαÞ; t40; α40: ð2:5Þ

Based on the separation of variables, we can deduce a first kind
Volterra boundary integral equation satisfied by the Neumann
data at x¼1.

Denote f ðtÞ≔uxð1; tÞ. Let vðx; tÞ ¼ uðx; tÞ�ððx2=2Þf ðtÞþ ðxð2�xÞ=
2ÞqðtÞÞ, then by a simple calculation, we know that the function
vðx; tÞ satisfies the following direct problem of time-fractional
diffusion equation:

0∂
α
t v�vxx ¼ gðx; tÞ; 0oxo1; 0otoT ;

vxð0; tÞ ¼ 0; 0rtrT ;

vxð1; tÞ ¼ 0; 0rtrT ;

vðx;0Þ ¼ϕðxÞ; 0rxr1;

where

gðx; tÞ ¼ � x2

2 0∂
α
t f ðtÞþ

xð2�xÞ
2 0∂

α
t qðtÞÞþ f ðtÞ�qðtÞ

�
ð2:6Þ

and

ϕðxÞ ¼φðxÞ� x2

2
f ð0Þþxð2�xÞ

2
qð0Þ

� �
:

Suppose vðx; tÞ ¼Wðx; tÞþPðx; tÞ such that W and P satisfy the
following problem (2.7) and (2.8), respectively:

0∂αt W�Wxx ¼ 0; 0oxo1; 0otoT ;

Wxð0; tÞ ¼ 0; 0rtrT ;

Wxð1; tÞ ¼ 0; 0rtrT ;

Wðx;0Þ ¼ϕðxÞ; 0rxr1:

8>>>><
>>>>:

ð2:7Þ

0∂αt P�Pxx ¼ gðx; tÞ; 0oxo1; 0otoT ;

Pxð0; tÞ ¼ 0; 0rtrT ;

Pxð1; tÞ ¼ 0; 0rtrT ;

Pðx;0Þ ¼ 0; 0rxr1:

8>>>><
>>>>:

ð2:8Þ

By the separation of variables, the solution of problem (2.7) can be
written formally as an infinite series (refer to [42])

Wðx; tÞ ¼ ∑
1

k ¼ 0
ϕkEα;1ð�k2π2tαÞ cos ðkπxÞ; ð2:9Þ

where ϕk are the Fourier coefficients given by

ϕk ¼ 2
Z 1

0
cos ðkπxÞϕðxÞ dx; kZ1 and ϕ0 ¼

Z 1

0
ϕðxÞ dx; ð2:10Þ

and Eα;1 is the Mittag–Leffler function defined in (2.4).
By using Duhamel's principle for a fractional diffusion equation,

see Proposition 3 in [42] or the original one in [35], the solution of
problem (2.8) can be expressed by

Pðx; tÞ ¼
Z t

0
Vðx; t; τÞ dτ; ð2:11Þ

where Vðx; t; τÞ is the solution of following problem:

τ∂αt V ðx; t; τÞ ¼ Vxxðx; t; τÞ; ðx; tÞA ð0;1Þ � ðτ; TÞ;
Vðx; t; τÞ∣t ¼ τ ¼ 0D

1�α
τ gðx; τÞ; 0rxr1;

Vxð1; t; τÞ ¼ 0; τrtrT ;
Vxð0; t; τÞ ¼ 0; τrtrT ;

8>>>><
>>>>:

ð2:12Þ

in which 0D
1�α
τ is the Riemann–Liouville fractional derivative

defined in (2.2).
In the following, by using Lemma 2.3, we give a clear expres-

sion to the solution P of problem (2.8). From the definition of g in
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