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a b s t r a c t

Based on kernel-based approximation technique, we devise in this paper an efficient and accurate
numerical scheme for solving a backward problem of time-fractional diffusion equation (BTFDE). The
kernels used in the approximation are the fundamental solutions of the time-fractional diffusion
equation which can be expressed in terms of the M-Wright functions. To stably and accurately solve
the resultant highly ill-conditioned system of equations, we successfully combine the standard Tikhonov
regularization technique and the L-curve method to obtain an optimal choice of the regularization
parameter and the location of source points. Several 1D and 2D numerical examples are constructed to
demonstrate the superior accuracy and efficiency of the proposed method for solving both the classical
backward heat conduction problem (BHCP) and the BTFDE.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decades, the investigation of backward heat con-
duction problem (BHCP) arises frommany branches of engineering
sciences. For instance, there is a great demand on a good estima-
tion of heat temperature and heat flux history from only spatially
observed data during a heat propagation process. In general,
transient heat conduction phenomena are governed by the para-
bolic heat conduction equation. If the initial temperature distribu-
tion and boundary conditions are given, a complete recovery of the
unknown solution is attainable from solving a well-posed pro-
blem. In reality, however, the boundary conditions are usually
either missing or incomplete; and the temperature distribution
data can only be collected at some specified time intervals.
Although heat conduction process is very smooth, the process
is irreducible. This means that the characteristic of the solution
(for instance, the shape of the interior heat flow) may not be
affected by the observed data. On the other hand, the heat
conduction process has no finite propagation speed and thus an
efficient non-destructive testing technique can be achieved at a
comparably much lower cost. The lack of mathematical analysis
and efficient algorithm, however, hinders the development of such
low cost and efficient non-destructive testing technique.

The BHCP is in nature unstable because the unknown solution
and its derivatives have to be determined from indirect observable
data which contain measurement error. The major difficulty in
establishing any numerical algorithm for approximating the solu-
tion is due to the severe ill-posedness of the problem and the ill-
conditioning of the resultant discretized system of equations. It is
a typical ill-posed problem in the sense that solution of BHCP does
not continuously depend on the final temperature data. In fact, any
small change in the given final temperature data may induce
enormous change in the solution. Stable approximation by using
regularization techniques has been investigated by Han et al. [1],
Muniz et al. [2], etc. Recently, the Method of Fundamental
Solutions (MFS) have been used respectively by Hon and Li [3],
Liu [4], Mera [5] and Wei and Wang [6] for solving the BHCP. It is
well known that the accuracy of the MFS depends on a suitable
placement of source points. Mera in [5] proposed to put the source
points on a line below the initial time whereas Hon and Li in [3]
gave an improved solution by placing the source points uniformly
over both the temporal and spatial axes. In [6] the authors
provided a new choice method for locating the source points from
using the single layer heat potential.

Partial differential equations of fractional orders have recently
become a focus of many research studies because of their various
applications in fluid mechanics, viscoelasticity, biology, physics,
and engineering. Fractional calculus in mathematics is a natural
extension of integer-order calculus. It has been used for model-
ing many physical processes arisen from real-life problems, for
instance, the modeling on the transport of passive tracers carried
by fluid flows in a porous medium under groundwater hydrology.
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Studies of the complicated phenomena of the interstitial fluid
flows are still under intensive researches and are particularly
challenging for quantitative analyses and modeling. The time-
fractional partial differential equation, obtained from the standard
partial differential equation that replaces the time derivative by a
fractional derivative, is related with the continuous-time random
walk and is a model for anomalous diffusion in many applied fields
such as diffusion processes of contaminants in porous media.
Numerical methods for solving well-posed initial boundary value
problems of fractional diffusion equation can be found from the
recent works of Wen et al. [7], Brunner et al. [8], and Cuesta and
Palencia [9]. To the knowledge of the authors, there are still very
little theoretical and computational works on solving BTFDE. More
recently, the investigation of the BTFDE problem have respectively
performed by Liu and Yamamoto [10] with the quasi-reversibility
method; Ren et al. [11] with the spectral truncation method; and
Wang et al. [12] with the Tikhonov regularization method.

In this paper, based on the Kernel-Based Approximation (KBA),
we devise an efficient and accurate numerical scheme for solving
the backward problem of time-fractional diffusion equation and
propose a new strategy to choose the location of source points
through the solution expressed in terms of integrals of the Green's
functions obtained from solving the Cauchy problem. To solve the
highly ill-conditioned resultant system of linear equations, we
adapt the use of the standard Tikhonov regularization technique
with the L-curve method for an optimal regularization parameter.
Numerical result indicates an improvement on both efficiency and
accuracy for solving the BTFDE in comparing with the works on
BHCP given in [3–6] and BTFDE in [6].

This paper is organized as follows. In Section 2 we consider an
inverse problem of BTFDE with the fractional derivative defined in
the sense of Caputo. The numerical scheme based on the kernel-
based approximation is devised in Section 3. A new strategy for
the location of source points is given. Numerical verification on the
efficiency and accuracy of the proposed method for both 1D and
2D BTFDE problems is presented in Section 4. Finally, we conclude
the paper in Section 5.

2. Backward time-fractional diffusion equation

Consider the following time-fractional diffusion equation:

∂βuðx; tÞ
∂tβ

¼∇2u; xAΩ�Rn; tAð0; TÞ; ð2:1Þ

where ∂βuðx; tÞ=∂tβ denotes the fractional derivative of given order
β with respect to the time variable t in the sense of Caputo defined
in [13,14] as

∂βφðtÞ
∂tβ

¼

∂nφðtÞ
∂tn

; β¼ n;

1
Γðn�βÞ

R t
0

φðnÞðτÞ
ðt� τÞβ � nþ 1 dτ; n�1oβrn:

8>>><
>>>:

ð2:2Þ

In the case of slow diffusion, the values of β are taken to be
0oβo1. Eq. (2.1) subject to the boundary condition:

uðx; tÞ ¼ f ðx; tÞ; xA∂Ω; 0otoT ; ð2:3Þ
and the final condition:

uðx; TÞ ¼ gðxÞ; xAΩ; ð2:4Þ
is called an inverse backward problem for the time-fractional
diffusion equation (BTFDE) in which the unknown solution uðx; tÞ
for xAΩ;0rtoT has to be determined from the boundary
measurement f and terminal time measurement g, which normally
contain noises in real measurement. Recently, the Caputo deriva-
tive has been extensively investigated due to its adaptability in

treating physical and engineering problems which require stan-
dard initial conditions [13,14].

Proofs on the existence and stability for the solution of this
BTFDE problem (2.1), (2.3), (2.4) have been established in [15].
Numerical computation, however, is still very rare due to the
introduction of fractional derivatives. Based on the kernel approx-
imation method, we devise in this paper an efficient and effective
numerical method to approximate the solution under noisy data
f and g.

In practical applications, the data f ðxÞ and gðx; tÞ are given only
at some scattered discrete points ðxi; tiÞmþn

i ¼ 1 :

uðxi; tiÞ ¼ f ðxi; tiÞ; i¼ 1;…;m; ð2:5Þ

uðxi; TÞ ¼ gðxiÞ; i¼mþ1;…;mþn: ð2:6Þ

where fxigmi ¼ 1, ftigmi ¼ 1 denote respectively the discrete spatial
values on the boundary ∂Ω and temporal values in the interval
ð0; T �, fxigmþn

i ¼ mþ1 denotes the discrete spatial values in the domain
Ω. These discrete points ðxi; tiÞi ¼ 1;…;m, ðxi; TÞi ¼ mþ1;…;mþn are also
called collocation points.

The fundamental solutions of Eq. (2.1) for general β are given
as [16]

Gβðx; tÞ ¼
1

2tβ=2
Mβ=2

jxj
tβ=2

� �
HðtÞ; ð2:7Þ

where H(t) is the Heaviside function and Mβ=2ðjxj=tβ=2Þ is the
M-Wright function defined as

MνðzÞ ¼ ∑
1

n ¼ 0

ð�zÞn
n!Γ½�νnþð1�νÞ�

¼ 1
2πi

Z
Ha
es� zsν ds

s1�ν; 0oνo1;

where Ha denotes the Hankel path.
For computational purpose, we consider in this paper the cases

when ν¼ 1=2 and ν¼ 1=3 so that the following identities hold

M1=2ðzÞ ¼
1ffiffiffiffi
π

p ∑
1

n ¼ 0
ð�1Þn 1

2

� �
n

z2n

ð2nÞ!¼
1ffiffiffiffi
π

p expð�z2

4
Þ; ð2:8Þ

M1=3ðzÞ ¼
1

Γð2=3Þ ∑
1

n ¼ 0

1
3

� �
n

z3n

ð3nÞ!�
1

Γð1=3Þ ∑
1

n ¼ 0

2
3

� �
n

z3nþ1

ð3nþ1Þ!

¼ 32=3Aið z

31=3Þ; ð2:9Þ

where Ai denotes the Airy function.
We note here that the M-Wright functions, which was intro-

duced by Mainardi et al. [16], are special kinds of Wright
functions:

Wλ;μðzÞ ¼ ∑
1

n ¼ 0

ð�zÞn
n!Γ½λnþμ�

¼ 1
2πi

Z
Ha
esþ zs� λds

sμ
; λ4�1;μAC;

for λ¼ �ν; μ¼ 1�μ, i.e.,

MνðzÞ ¼W �ν;1�νð�zÞ; 0oνo1;

whose numerical computation involves the evaluation of an
infinite series of complex integrals.

For illustration, some figures of the fundamental solutions to
problem (2.1) for different β are displayed in Fig. 1 with their
characteristics outlined for β¼ 1=2 and 1=3 in Fig. 2. From these
figures we can observe the so-called “memory effect” of fractional
derivatives, which imposes some difficulties in obtaining accurate
approximation from using classical numerical techniques.
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