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a b s t r a c t

This article addresses weakly singular, hypersingular integrals, which arise when the boundary integral
equation (BIE) methods are used for 3-D potential theory problem solutions. An approach based on the
theory of distributions and the application of the second Green theorem has been explored for the
calculation of such divergent integrals. The divergent integrals have been transformed to a form that
allows easy and uniform calculation of weakly singular and hypersingular integrals. For flat boundary
elements (BE), piecewise constants and piecewise linear approximations, only regular integrals over the
contour of the BE have to be evaluated. Furthermore, all calculations can be done analytically, so no
numerical integration is required. In the case of 3-D, rectangular and triangular BE have been considered.
The behavior of divergent integrals has been studied in the context that the collocation point moves to
the contour of the BE.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, many publications have been devoted to discussing
BIE methods and their application to science and engineering because
the BIE and the discrete analogy boundary element method (BEM) are
very powerful tools for solving the mathematical problems that arise
in science and engineering [1,2,7,17]. A historical account of the main
stages of BIE and BEM development can be found in [9]. One of the
main problems of the BIE solution is the calculation of divergent
integrals as the numerical methods developed for regular integrals
cannot be used and special methods have to be applied.

Many methods have been developed using a classical approach
for calculating the divergent integrals of different types. Usually,
divergent integrals of a different type require different methods
for their mathematical interpretation and numerical calculation.
An analysis of most known methods used for the treatment of the
different divergent integrals can be found in several books
[1,7,17,20,25,27,33] and review articles [8,18,22,26,34,40]. From these
publications, it follows that a significant impact on the topic under
consideration has been made by Cruse [12–15], Mukherjee [28–31],
Atluri [10,11,32,35] and their coauthors. There are some additional
references that may also be of interest [3,4]. This publication is not
intended to be a review; therefore, we do not present a long list of
publications on the topic and will not critically analyze the problem.
Instead, we concentrate on problems directly related to the topic of
this publication. We begin by making one historical remark: the
method of regularization for singular and hypersingular integrals,

which was developed by Guiggiani and coauthors (see [16] and
references there), is very popular in the BEM community. Roughly
speaking, the method consists of the following: A singularity is
extracted from the divergent integral and divided into several parts.
One part is relatively simple and contains singularities, while the
other parts are regular. The regular parts are calculated using
established methods, and the singular part is usually known and
can be calculated. Such an approach is not new; it has long been used
for divergent series calculations [21] and for calculating divergent
integrals. For example, Kantorovich in [24] calculated 1-D divergent
integrals with different types of singularities, including hypersingular
integrals, and then extracted the divergent parts and calculated them
analytically. Michlin extended this approach for the n-dimensional
case and the theoretical foundation of that method [26,27]. Since that
time, such methods have been used for divergent integral treatment.
For example, we used it to derive a solution for the elastodynamic
contact problems for cracked bodies in [36].

The classic approach for treating divergent integrals has one
significant disadvantage; divergent integrals with a different
singularity need different definitions, different theoretical justifi-
cations and different methods to be calculated. For example,
weakly singular integrals are considered improper integrals, sin-
gular integrals are considered in the sense of the Cauchy principal
value (PV), and hypersingular integrals have been considered by
Hadamard to be finite part integrals (FP).

In modern mathematics, divergent integrals have a strong theo-
retical foundation based on the theory of generalized functions
(distributions), which permits us to apply the same approach for
divergent integrals as for different types of singularities. According
to this theory, divergent integrals with any type of singularity can
be considered to be functionals (generalized functions) defined in
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special functional spaces and on specially defined test functions
[6]. We have shown in several publications that the approach
based on the theory of distributions has not only theoretical
meaning but is also an important application for practical calcula-
tions of divergent integrals.

In our previous publications [17–19,37–44], the approach based
on the theory of distributions has been developed for the regular-
ization of divergent integrals with different singularities that arise
in BEM applications. We explore the approach presented in [5],
which interprets definite integrals as distributions and applies
them to the solution of problems of fracture mechanics in [36].
Then, this approach was further developed for the regularization
of 2-D hypersingular integrals, which appear in static and dynamic
problems of fracture mechanics in [43] and [44], respectively.
Regularized formulae for different types of divergent integrals
have been reported in [38,39,40–41]. Additional applications of the
regularization method can be found in review articles [18,19,42]
and in a book [17]. Further development of that approach and the
application of the second Green’s theorems in the sense of the
theory of distributions have been described in [37,38]. The case of
piecewise linear approximation has been considered in [39,40],
while regularized formulae obtained in [38,40,41] permit us to
transform weakly divergent singular, singular and hypersingular
integrals over any polygonal area into regular integrals over the area
contour. The developed approach can be applied to the regularization
of a wide class of divergent integral regularization. In addition to
hypersingular integrals, it is also suitable for the regularization of a
variety of divergent integrals and any polynomial approximation.

In this paper, the approach based on the theory of distributions and
Green’s second theorem is developed and applied to the regularization
of the divergent integral that appears in 2-D and 3-D potential theory
problems solved by BIE methods. Generalized Gauss-Ostrogradski and
Green theorems, which are applicable for the case of singular
functions, have been obtained using methods presented in [5]. Then,
the generalized second Green theorem was used for the development
of the regularized formulae for divergent integral calculation. A special
case of 2-D divergent integral regularization has been assessed for
weakly and hypersingular integrals, and regular formulae for their
calculation have been obtained. Theweakly singular and hypersingular
integrals for piecewise constant approximation have been considered
for arbitrary convex polygons and for piecewise linear approximations
that have been considered for rectangular and triangular BE. Using
regularized formulae obtained here, divergent integrals were calcu-
lated for circular, quadratic and triangular areas. It is important to
mention that in all presented equations, all calculations can be done
analytically and no numerical integration is needed. The behavior of
the divergent integrals was studied in the context of the collocation
point being situated inside and outside of the BE and also when
moving to the contour of the BE; the results are illustrated by
corresponding diagrams created with Mathematica software.

2. Divergent integrals and boundary integral equations

Divergent integrals occur in various mathematical and engi-
neering applications and can be of various types of singularity that
exhibit different behavior in the vicinity of singular points. In this
study, we concentrate our efforts on calculating the divergent
integrals that appear in BIE when the corresponding system of
integral equations is solved numerically using BEM. Usually,
changing coordinates corresponding to divergent integrals can
be presented as

Ji;jk ¼
Z
S

xi1x
j
2fðxÞ
rk

dS ð1Þ

where r¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x21þx22þx23

q
is the distance in Euclidian space, x1and

x2are the coordinates of integration and function fðxÞis regular.
As soon as the point that corresponds to the origin of the

coordinated system belongs to Ω, the integral (1) is divergent. The
type of singularity depend on the value of the indices i, j and k.
Because of the aforementioned singularity integrals, (1) cannot be
transformed using the regular Green’s theorem. Therefore, a
generalized function approach will be used here.

In fact, the proposed method can be applied toward the regular-
ization of an even wider class of divergent integrals. To illustrate this
concept and to demonstrate the power of the proposed methods, we
consider BIE and corresponding divergent integrals that appear in the
general elliptic boundary-value problem.

Let us consider a homogeneous region in which 3-D Euclidean
space R3 occupies volume V with a smooth boundary ∂V . The
region V is an open bounded subset of the Euclidean space with a
C0;1 Lipschitzian regular boundary ∂V . In the region V , we consider
vector functions uðxÞand bðxÞthat are subject to a system of second
order elliptic partial differential equations expressed in general
form as

LUu¼ b ð2Þ
where uand b are vector-functions and Lis a matrix differential
operator; they have the form

L¼
L11 ⋯ L1n
⋮ ⋯ ⋮
Ln1 ⋯ Lnn

�������
�������; u¼

u1

⋮
un

�������
�������; f ¼

f 1
⋮
f n

�������
������� ð3Þ

The coefficients of the matrix differential operator have the form

Llk ¼
∂
∂xj

clkji
∂
∂xi

þblki
∂
∂xi

þalk ð4Þ

Coefficients clkji, blki and alk can be constants or can depend on
coordinates.

If the region V is finite, it is necessary to establish boundary
conditions. We consider the mixed boundary conditions in the
form

uðxÞ ¼ /ðxÞ; 8xA∂Vu; pðxÞ ¼ PUuðxÞ ¼ψðxÞ; 8xA∂Vp ð5Þ
The boundary contains two parts: ∂Vu and ∂Vp such that ∂Vu \
∂Vp ¼∅ and ∂Vu [ ∂Vp ¼ ∂V . On the part ∂Vu is prescribed an
unknown function uðxÞ, and on the part ∂Vp is prescribed its
generalized normal derivative pðxÞ. The generalized normal deri-
vative is defined by the matrix differential operator with coeffi-
cients

Plk ¼ njclkji
∂
∂xi

ð6Þ

here, ni are components of the outward normal vector to the
surface ∂Vp.

If the region V is infinite, then the solution of eq. (2) instead of
the boundary conditions must satisfy additional conditions at the
infinity in the form

‖uðxÞ‖¼ Oðr�1Þ; ‖PUuðxÞ‖¼ Oðr�2Þ for r-1 ð7Þ
where ris the distance in the Euclidian space.

According to the generalized second Green’s theoremZ
V
ðun ULUu�uULn UunÞdV ¼

Z
∂V
ðun UPUu�uUPn UunÞdS ð8Þ

we can obtain the following integral identityZ
V
uULn UundV ¼

Z
∂V
ðuUPn Uun�un UPUuÞdS�

Z
V
un UbdV ð9Þ

where Ln is the operator adjoined to L.
In the case of the scalar Poisson equation [5,7,39] and

the system of the Lame linear equations of elasticity [1,17,40],

V.V. Zozulya / Engineering Analysis with Boundary Elements 40 (2014) 162–180 163



Download	English	Version:

https://daneshyari.com/en/article/512351

Download	Persian	Version:

https://daneshyari.com/article/512351

Daneshyari.com

https://daneshyari.com/en/article/512351
https://daneshyari.com/article/512351
https://daneshyari.com/

