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This paper presents the boundary element method for the numerical simulation of 2D and 3D
nonhomogeneous potential problems. A novel technique, called recursive composite multiple reciprocity
method (RCMRM), is introduced to avoid the domain integral of the non-homogenous equation in the
boundary element method (BEM). The proposed method has no requirement of domain discretization,
and thus is a truly boundary-type numerical method. Numerical results illustrate that the present
method is computationally efficient, accurate, and convergent with an increasing number of boundary
elements and collocation points.
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1. Introduction

The finite element method (FEM) [1,2] and the boundary
element method (BEM) [3,4] are well-established techniques
applied to the solution of the engineering problems. The FEM
involves a complete mesh generation of the physical domain,
which is extremely costly and tedious especially for 3D unbounded
or irregular domain. Unlike the FMM, the BEM only requires the
boundary discretization that alleviates the computational com-
plexity and cost.

So far, the BEM applied to the potential problem has been
investigated in many branches of engineering applications [5-8].
As well known, we have to deal with a domain integral in the
boundary integral equation. During the past three decades, many
numerical techniques [3,9-16] have been developed to evaluate
the domain integral by avoiding the discretization of the internal
domain, and thus hold the advantage of the BEM in that only the
boundary of the problem needs to be discretized into elements.
The most popular approach is the dual reciprocity method (DRM)
developed by Nardini and Brebbia [14], which has been used to
solve the potential equation [17,18]. In the DRM, the non-
homogeneous term is approximated with a series of radial basis
functions (RBF) [19] or polynomial functions [20]. The DRM is easy
programming, efficient, and flexible to handle various non-
homogeneous problems. However, the distribution and location
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inner nodes largely affect the accuracy of the DRM. To avoid the
drawback in the DRM, Gao [10] presented the radial integration
method (RIM) for the evaluation of domain integrals. Based on a
pure mathematical treatment, the RIM can transform domain
integrals to the boundary in a unified way without using particular
solutions [21-23].

On the other hand, Nowak and Brebbia [15] proposed the
multiple reciprocity method (MRM) as an extension of the DRM.
Compared with the DRM, the MRM has no requirement of inner
point distribution. It repeatedly uses a sequence of high-order
Laplace operators to transform the domain integrals to the
boundary integrals. The truly boundary-type method [24,25] was
developed by combining the BEM the MRM. But the standard
MRM is computationally much more expensive in the construction
of different interpolation matrices and has limited feasibility for
general non-homogeneous problems due to its conventional use of
high-order Laplacian operators.

More recently, Chen et al. [26] presented the recursive compo-
site multiple reciprocity method (RC-MRM) which employs the
high-order composite differential operators to vanish the non-
homogeneous term of various types. The “recursive” technique in
the RC-MRM significantly reduces CPU time and storage requirement
of the original MRM. Then the boundary particle method (BPM) has
been proposed by employing the strong-form boundary collocation
scheme in conjunction with the RC-MRM. From now on, the BPM
has been applied to Cauchy non-homogeneous Poisson and Helm-
holtz equations [27,28], time fractional diffusion equations [29] and
Winkler plate bending problems [30]. Due to the highly ill-
conditioned interpolation matrix of the strong-form collocation
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scheme, the BPM in some cases requires the regularization methods
such as the truncated singular value decomposition (TSVD) to
guarantee the numerical accuracy and stability. This paper makes
the first attempt to introduce the RC-MRM technique into the weak-
form BEM for solving 2D and 3D potential problems. Thanks to the
well-posed discretization matrix of the weak-form BEM, the pro-
posed scheme avoids the ill-conditioning of the interpolation matrix
and has no requirement of regularization techniques compared with
the strong-form collocation boundary schemes. The accuracy and
efficiency of the present scheme are verified through several bench-
mark problems.

The remaining part of this paper is organized as follows.
Section 2 descripts the RC-MRM technique and boundary integral
equations, and then develops a new boundary-only numerical
method called boundary element-collocation method. Section 3
presents the numerical implementation of the proposed method.
Section 4 provides four benchmark examples to test the accuracy
and efficiency of the proposed scheme. Finally, Section 5 contains
some conclusions.

2. The boundary element-collocation method

The nonhomogeneous potential equation can be expressed as
AuX)+bx)=0, xecQ 1)
where u is the heat potential, b is the heat source function, £ is the

domain with the boundary 7. The following boundary conditions
are imposed on I':

uXx)=1uX), Xelp (2)

au(x)

qx) =——=q(X), Xely 3)

in which n is outer normal vector, and I'=7Ip U I'y.
2.1. Recursive composite multiple reciprocity technique

In fact, the solution of Eq. (1) can be divided into two parts: the
particular solution u, and the homogeneous solution u,. The
particular solution u, satisfies the governing equation

Aup(X)+bx) =0, xeQ 4)

And the homogeneous solution u, needs to satisfy the following
homogeneous equation and the updated boundary conditions:

Aup(x)=0, xeQ (5)
10y(%) = T(®) — up(®), XeTp ®)
a0 =300~ ey )

Firstly, the RC-MRM [26] technique is introduced to solve the
particular solution up,. A composite differential operator is used in
the RC-MRM to vanish the non-homogeneous term b in Eq. (4) by
the following iterative equation:

IlimL[--'LzL] [b(x)] =0 8)

in which Ly, L, ---, L; are differential operators of the same kind or
different kinds. Compared with the MRM, Eq. (8) has greater
flexibility and wider applicability to embrace the features of
function b(x), since the iterative differential operators are not
restricted to the same one of the governing equation, i.e. Laplacian
operators. Under the assumption that Eq. (8) is finite order or is
truncated at certain order /, we have the composite MRM equation
and boundary conditions as follows:

L[---Lle AUP(X) ~0, xeQ

Aup(X)= —b(x), xerl
LiAu,(X)= —Lib(x), xer
L,,1~~-L2L1Aup(x)= 7L[,1"~L2L1b(x), Xel (9)

Therefore, Eq. (4) is reduced to a higher-order homogeneous
partial differential problem. A boundary collocation method, called
boundary particle method (BPM) [31], can be used to solve the
transformed Eq. (9) via only boundary discretization. By using this
method, the solution can be approximated by a linear combination
of fundamental solution as follows:

[ R
> aufR—s) (10)

i=1j=1

llp(X) =

where a;; are unknown coefficients to be determined, s; are the
source points (coincide with collocation points) located on the
boundary, and the function u¥ is the fundamental solution of the
composite operator L;.

2.2. Indirect boundary integral equations (BIEs)

In the BEM literature, there are various approaches to deal with
singular integrals. The virtual BEM [4,32] directly avoids singular
integrations by distributing source points on a virtual boundary
outside computational domain. Another approach is to use reg-
ularized techniques [3,5,33] to remove the singularity of integrals.

In this study, the homogeneous solution uy is calculated by
introducing the indirect regularized BIEs [33]

Aw@)dr=0, yer a1

Up(x) = /ry/(y)u*(x,y)dr—kc, xyel (12)

(@) = kyy (1) + / -y ) )dr

+y®) /

where x,y respectively denote the field point and source point, y
denotes the density function to be determined, C is a unknown
constant, k is 1 for interior problems or 0 for exterior problems,
and

ou*(x, y) au*(x y)
ony any

dr, xyerl (13)

—lﬂ Inr(x,y), for 2D
ut(x,y) = 1 o an (14)
4nr(x,y)’ or 3

are the fundamental solutions [34] for two- and three-dimensional
potential problems. A linear system of equations can be formed
based on the discretization of Eq. (12) and/or Eq. (13) with N
constant elements. This is a system of N equations with N+1
unknowns (the coefficients y/ (j=1,---,N) and C). An additional
equation is obtained by discretizing Eq. (11), and then all the
unknowns can be determined.

Based on Egs. (9)-(13), we finally establish a new boundary
element-collocation method for Poisson problems. In this method,
a;; should be firstly evaluated by using Eqgs. (9) and (10), and then
up(X) at any inner or boundary point can be obtained. Then
substituting up,(x) into the boundary integral Eqs. (12) and (13),
we can get the unknown density function y. Once ;) have been
known, the potential and its derivative at inner point can be
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