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a b s t r a c t

An isogeometric enriched quasi-convex meshfree method is presented with particular application to the
material interface modeling. The current quasi-convexity of the meshfree approximation is achieved by
introducing the mixed reproducing points of isogeometric B-spline basis functions into the meshfree
consistency conditions. The resulting new meshfree shape functions have a similar form as the standard
reproducing kernel meshfree shape functions, while the negative portions of the shape functions are
significantly reduced. It is shown that this quasi-convex meshfree scheme yields better accuracy
compared with the conventional meshfree method. Furthermore, in order to accurately model the
material interface where the strain jump needs to be properly treated, a coupled isogeometric–meshfree
approximation with a unified format of reproducing conditions is devised. The problem geometry and
strain jump for the material interface are described by the isogeometric basis functions with repeated
knots in the interface normal direction, while the rest regions are discretized by the isogeometric
enriched quasi-convex meshfree approximation. This approach encompasses the geometry exactness of
isogeometric analysis as well as the model refinement robustness of meshfree formulation. The
effectiveness of the proposed method is thoroughly demonstrated by several typical numerical
examples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Meshfree methods [1,2] and isogeometric analysis (IGA) [3,4] are
two classes of numerical methods that have attracted significant
attention and experienced rapid developments with successfully
applications [5–26] recently. The construction of higher order
smoothing approximations is trivial in both types of methods, which
is not an easy task for the conventional finite element method [27].
Meanwhile, the node based meshfree approximation enables a very
flexible and robust local model refinement [5–8]. The isogeometric
analysis gracefully integrates computer aided geometry design and
finite element analysis, and thus offers model refinement indepen-
dent geometry exact computations [3,17]. Nonetheless, special treat-
ments like T-splines are necessary for the isogeometric local model
refinement due to the tensor product nature of multidimensional
basis functions [28]. In order to employ the easy local refinement and
geometry exactness advantages of the meshfree methods as well as

isogeometric analysis, a consistently coupled isogeometric–meshfree
method [29] has been developed, where the consistency conditions
of B-spline basis functions were presented along with theoretical and
computational verification. We just found that these consistency or
reproducing conditions can also be obtained by employing the
Marsden’s identity for splines [30]. It turns out that these consistency
conditions are essential to ensure the optimal convergence of the
coupled isogeometric–meshfree method [29,31]. However, in this
coupled approach, the meshfree part does not share the convex
approximation property with the isogeometric basis functions.

Convex approximation implies non-negative basis or shape func-
tions which give a variation diminishing approximation and non-
negative mass matrices for dynamic analysis [32]. The B-spline or
NURBS basis functions used in isogeometric analysis are naturally
convex [3]. On the other hand, the frequently used moving least
square or reproducing kernel meshfree approximants are non-
convex [1,2]. Consequently, the construction of convex meshfree
approximations is a current focus of meshfree methods [32–39]. The
maximum entropy meshfree approximation is a typical convex
meshfree approximation, where the shape functions are obtained
by minimizing the entropy function under the linear completeness
constraints [32–34]. Iterative process is usually required for the shape
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function computation. Another convex meshfree approximation
meeting linear completeness was realized by the generalized mesh-
free approximation scheme [35,36]. Although several attempts were
made to extend the max-entropy meshfree interpolant to quadratic
order completeness or consistency conditions [38], the construction
of arbitrary order max-entropy convex meshfree shape functions is
still an open issue. Emanating from a different path, a quasi-convex
meshfree method [39] was developed through a compromise
between the arbitrary order general formulation and the strict
convex requirement. This method relaxes the consistency conditions
in a unified manner and admits an easy and straightforward
construction of arbitrary order meshfree approximations that exhibit
a quasi-convex behavior, i.e., the shape functions for the interior
nodes are close to be non-negative and meanwhile the negative
values of the shape functions associated with the near boundary
nodes are reduced notably [39].

In this work, an alternative approach is proposed to construct
quasi-convex meshfree approximation, i.e., the isogeometric
enriched quasi-convex reproducing kernel approximation. It is
noted that B-spline basis functions show perfect convex property
and thus in this study the mixed reproducing points of B-spline
basis functions are directly built into the reproducing kernel
consistency conditions. It is shown that this formulation also leads
to quasi-convex reproducing kernel meshfree shape functions
without introducing the nodal gap functions [39]. The accuracy
of this new quasi-convex meshfree approximation is demon-
strated through several examples. Although the smoothing mesh-
free approximation is an obvious advantage in many situations, it
may become a disadvantage when dealing with the material
interfaces arising from the analysis of heterogeneous materials.
The higher order meshfree continuity has to be modified via
different techniques to accommodate the strain jump across a
material interface [40–44]. Clearly exact description of the mate-
rial interface has an important effect as well. In order to have a
geometry exact formulation, the isogeometric approach is adopted
to describe the problem geometry as well as the material interface,
the rest problem domain is discretized using the proposed
isogeometric enriched quasi-convex reproducing kernel meshfree
approximation. Thus the strain or gradient jump across the
material interface can be readily captured by setting repeated
knots in the interface normal direction. The coupling of various
regions is achieved by modifying the meshfree approximants
through a unified formulation of consistency conditions. The
effectiveness of the proposed material interface modeling method
is demonstrated by a series of examples.

The layout of this paper is as follows. The basics of isogeometric and
meshfree approximations are described in Section 2. Section 3 eluci-
dates an isogeometric enriched quasi-convex meshfree approximation

that directly embeds the mixed reproducing points of B-spline basis
functions into the reproducing kernel meshfree formulation to mini-
mize the negative parts of the conventional meshfree shape functions.
The modeling of material interface with the isogeometric enriched
quasi-convex meshfree formulation is detailed in Section 4. Several
examples are presented in Section 5 to verify the proposed algorithm.
Finally conclusions are drawn in Section 6.

2. Basics of isogeometric and meshfree approximations

2.1. Isogeometric basis functions

The basis or shape functions commonly used in isogeometric
analysis are the B-spline basis functions and their rational general-
ization, the non-uniform rational B-spline (NURBS) basis functions.
The basis functions for multi-dimensional isogeometric analysis
are usually formulated through the tensor product operation on
their one dimensional counterparts in different directions.

A group of B-spline basis functions with an order of p can be
conveniently defined with the aid of the knot vector kξ that is
formed by a set of non-decreasing numbers in the one dimen-
sional parametric domain ξA ½0;1�:

kξ ¼ fξ1 ¼ 0;…; ξi;…; ξnk ¼ 1gT ð1Þ

where nk denotes the number of knots. When the first and last
knots are repeated (pþ1) times, a knot vector is said to be an open
knot vector and in this case nk¼ nbþpþ1, where nb is the
number of B-spline basis functions. A pth order B-spline basis

Fig. 1. 1D quadratic C1 and C0 B-spline basis functions.

Fig. 2. 2D quadratic C0 B-spline basis functions.
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