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a b s t r a c t

In this work, a novel approach is presented for three-dimensional nearly singular boundary element
integrals for steady-state heat conduction. Accurate evaluation of the nearly singular integrals is an
important issue in the implementation of boundary element method (BEM). In this paper, an
exponential transformation is introduced to deal with the nearly singular integrals in three-
dimensional BEM. First, a triangle polar coordinate system is introduced. Then, the exponential
transformation is performed by five steps. For each step, a new transformation is proposed based on
the distance from the source point to surface elements which is expressed as r2 ¼OðA2

k ðθÞρ2þr20Þ, and all
steps can finally be unified into a uniform formation. Moreover, to perform integrations on irregular
elements, an adaptive integration scheme considering both the element shape and the projection point
associated with the proposed transformation is introduced. Numerical examples are presented to verify
the proposed method. Results demonstrate the accuracy and efficiency of our method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Dealing with singular integrals and nearly singular integrals
has been a seemingly daunting task since the early days of the
boundary element method (BEM) [1–6]. For singular integrals,
many numerical techniques have been proposed, such as trans-
formation techniques [7], regularization techniques [6,8,9], radical
integration techniques [10,11] and Taylor series expansion techni-
ques [12,13]. Thus in this paper, we focus on the nearly singular
integrals.

Near singularities are involved in many boundary element
method (BEM) analyses of engineering problems, such as pro-
blems on thin shell-like structures [5,14,15], the contact problems
[16], as well as the sensitivity problems [17]. It can be found in the
pioneer work of Liu [18–20]. Accurate and efficient evaluation of
nearly singular integrals with various kernel functions of the type
O(1=rα) is crucial for successful implementation of the boundary
type numerical methods based on boundary integral equations
(BIEs), such as the boundary element method (BEM), the boundary

face method (BFM) [7,21]. A near singularity arises when a source
point is close to but not on the integration elements. Although
these integrals are really regular in nature, they can’t be evaluated
accurately by the standard Gaussian quadrature. This is because
the denominator r, the distance between the source and the field
point, is close to zero but not zero. The difficulty encountered in
the numerical evaluation mainly results from the fact that the
integrands of nearly singular integrals vary drastically with respect
to the distance. Effective computation of nearly singular integrals
has received intensive attention in recent years. Various numerical
techniques have been developed to remove the near singularities,
such as nonlinear transformations [19], Taylor series expansion
algorithm [22], global regularization [6,23], optimization transfor-
mation [24], semi-analytical or analytical integral formulas [25–
29], the sinh transformation [30–34], polynomial transformation
[35], adaptive subdivision method [7,36], distance transformation
technique [21,38–40], the PART method [41–43], and the expo-
nential transformation [44–46]. Most of them benefit from the
strategies for computing singular integrals [6,22,23].

Among those techniques, the exponential transformation tech-
nique seems to be a more promising method for dealing with
different orders of nearly singular boundary element integrals.
However, the transformation is only limited to 2D boundary
element. In this paper, we develop the exponential transformation
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technique for steady-state heat conduction to 3D boundary ele-
ment method in triangle polar coordinate system.

In our method, first a triangle polar coordinate system intro-
duced. This system is very similar to the polar system, but its
implementation is simpler than the polar system and also per-
forms efficiently. Then by applying the first order Taylor series
expansion, the distance between the source point and the integra-
tion elements is the equivalent of A2

k ðθÞρ2þr20. Based on the
equivalent distance, the exponential transformation in Refs. [44–
46] can be developed to 3D BEM in the triangle polar coordinate
system. Using the proposed transformation, the integrals with
near singularities can be accurately calculated. Furthermore, an
element subdivision technique considering both the element
shape and the positions of the project point is introduced in
combination with the improved transformation to perform inte-
grations on irregular elements. With our method, the nearly
singular boundary element integrals of regular or irregular ele-
ments can be accurately and effectively calculated. Numerical
examples are presented to validate the proposed method. Results
demonstrate the accuracy and efficiency of our method.

This paper is organized as follows. The general form of nearly
singular integrals is described in Section 2. In Section 3, distance
function is constructed in triangle polar coordinate system. In
Section 4, the transformations for nearly singular integrals are
presented and the element subdivision technique is introduced.
Numerical examples are given in Section 5. The paper ends with
conclusions in Section 6.

2. General descriptions

In this section, we will give a general form of the nearly singular
integrals over 3D boundary elements. First we consider the bound-
ary integral equations for 3D steady-state heat conduction.

The well-known BIE for steady-state heat conduction in 3-D is

C yð Þu yð Þ ¼
Z
Γ
u xð Þqn x; yð ÞdΓ�

Z
Γ
q xð Þun x; yð ÞdΓ ð1aÞ

qi yð Þ ¼
Z
Γ
q xð Þ∂u

n x; yð Þ
∂yi

dΓ�
Z
Γ
u xð Þ∂q

n x; yð Þ
∂yi

dΓ; i¼ 1;2;3 ð1bÞ

where x and y represent the field point and the source point in the
BEM, with components xi and yi, i¼1,2,3, respectively. Eq. (1b) is
used for calculation of the flux components at the domain points.

Eqs. (1a) and (1b) is discretized on the boundary Γ by
boundary elements Γe e¼ 1�Nð Þ defined by interpolation func-
tions. The integral kernels of Eqs. (1a) and (1b) become nearly
singular when the distance between the source point and integra-
tion element is very small compared to the size of integration
element. And the integrals in Eqs. (1a) and (1b) become nearly
singular with different orders, namely, un s; yð Þ with near weak
singularity, qn s; yð Þ and ∂un x; yð Þ=∂yi with near strong singularity,
∂qn x; yð Þ=∂yi with near hyper-singularity.

In this paper, we develop the exponential transformation
method for various boundary integrals with near singularities of
different orders. The new method is detailed in following sections.
For the sake of clarity and brevity, we take following integrals as a
general form to discuss:

I¼
Z
S

f x; yð Þ
rα

dS; α¼ 1;3;5 r¼ x�y j2
������ ð2Þ

where f is a smooth function, x and y represent the field point and
the source point in BEM, with components xi and yi, respectively. S
represents the boundary element. We assume that the source
point is close to S, but not on it.

3. Construction distance function in the triangle polar
coordinate system

3.1. The triangle polar coordinate system

As shown in Fig. 1, a plane triangle is mapped onto a square of
unit side-length. Within the framework of the BEM, the triangle
represents a boundary element embedded in a local coordinate
system. The following mapping [7,21] scheme is used:

ξ¼ ξ0þ ξ1�ξ0
� �

ρ1þ ξ2�ξ1
� �

ρ1ρ2

η¼ η0þ η1�η0
� �

ρ1þ η2�η1
� �

ρ1ρ2

(
ρ1;ρ2A ½0;1� ð3Þ

The Jacobian for the transformation from ðξ;ηÞ system to
system triangle polar coordinate system is ρ1SΔ, and

SΔ ¼ jξ1η2þξ2η0þξ0ξ2�ξ2η1�ξ0η2�ξ1η0j ð4Þ
It should be noted that triangle polar coordinate system is

analogous to the polar system, because the performances of ρ1 and
ρ2 are similar to the ρ and θ, respectively. However, this new
system is much simpler and even more effective than the polar
system. This is due to the fact that both ρ1 and ρ2 are constrained
to the interval [0,1] in each triangle. So the complicated determi-
nation of ρ and θ in each triangle is avoided.

3.2. The definition of the distance

As shown in Fig. 2, employing the first-order Taylor series
expansion in the neighborhood of the projection point xc, we have

xk�yk ¼ xk�xckþxck�yk ¼
∂xk
∂ξ

j ξ1 ¼ ξ0

η1 ¼ η0 ξ�ξ0
� �þ∂xk

∂η
j ξ1 ¼ ξ0

η1 ¼ η0 η�η0
� �þr0nk ξ0;η0

� �þO ρ2
1

� �¼ ρ1Ak β
� �þr0nk ξ0;η0

� �þO ρ2
1

� �
ð5Þ

where

AkðβÞ ¼ ∂xk
∂ξ

� �
j ξ1 ¼ ξ0
η1 ¼ η0

ξ1�ξ0
� �þ ξ2�ξ1

� �
ρ2

� �þ ∂xk
∂η

� �
j ξ1 ¼ ξ0
η1 ¼ η0

η1�η0
� �þ η2�η1

� �
ρ2

� �

Using Eqs. (3)–(5), we can easily obtain the distance function in
the following form:

r2 ¼ xk�yk
� �

xk�yk
� �¼ A2

k ρ2

� �
ρ2
1þr20þO ρ3

1

� � ð6Þ

Fig. 1. The triangle polar coordinate system.
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Fig. 2. Minimum distance r0, from the source point y to curved surface element.
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