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a b s t r a c t

This paper presents a meshless method based on the improved boundary distributed source method
(IBDS) to monitor two-phase flow in pipes using electrical resistance tomography (ERT). The con-
ductivity of background liquid is assumed to be known a priori while the shape and location of the voids
are the unknowns to be determined. The forward problem of ERT is solved using meshless IBDS method
and the voids location and shape are reconstructed using Levenberg–Marquardt method. IBDS method is
purely meshless and places its source and field points on the same physical boundary unlike
conventional method of fundamental solution approach. Moreover, the elements of system matrix
corresponding to Neumann and Dirichlet boundary conditions are evaluated analytically; therefore the
IBDS method is computationally efficient that gives an accurate and stable solution. Numerical and
experimental results with single and multiple voids are shown and the performance of IBDS method is
compared with the boundary element method (BEM) in monitoring two-phase flow.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Tomography applications in industry include locating the voids
formed due to normal or accidental conditions inside the process
vessel. Monitoring of such industrial process is essential for the
safety and efficiency of mechanical equipment [1,2]. Electrical
resistance tomography (ERT) is an imaging modality that recon-
structs the internal resistivity distribution in the region of interest.
The resistivity distribution is computed from the injected currents
and measured voltages across the electrodes that are discretely
attached on the outer surface of the process vessel [3]. The
relationship between internal resistivity distribution and mea-
sured boundary voltages on the electrodes is nonlinear. Therefore,
ERT forward problem is often solved using numerical methods,
except for simple cases such as homogeneous or concentric
anomaly case. Mesh based methods such as the finite element
method (FEM) and the boundary based methods like the boundary
element method (BEM), the finite difference method (FDM) are
used to compute the ERT forward problem [4–6].

Although, FEM offers good reconstruction performance, its
accuracy is dependent on the number of mesh elements used to
compute the solution. For the works related to shape estimation in
ERT employing FEM see [7–10]. To achieve better accuracy in
shape reconstruction problem, FEM needs adaptive meshing or use
of higher order approximation but this leads to increase in
computational complexity [11]. BEM is better suited to shape
estimation problems as compared to FEM as it discretizes the
boundaries alone and the dimension of the problem is reduced by
one [6,12–16]. Even though, BEM reduces the dimension of the
problem by one, it still needs boundary discretization and also
evaluation of singular boundary integrals to evaluate the solution.
Especially, for higher dimensions, discretization of boundary for
complex shaped object and evaluation of boundary integrals is not
trivial. Moreover, for large number of discretized points on the
boundary, the BEM system matrix becomes dense and is compu-
tationally intensive when compared to FEM. Recently, a new class
of methods called meshless methods have gained considerable
attention [17–22]. Meshless methods do not need any meshing or
evaluation of boundary integrals and are mathematically simple
and easy to use. Moreover, for less number of nodes, the computa-
tional time of meshless methods is less as compared to domain or
boundary based methods. Another key advantage of meshless
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methods is that they can be easily extended to higher dimensions.
In meshless methods, the approximation is built from nodes only,
thus, meshless methods are particularly suitable for problems
involving internal boundaries [17,20].

Many meshless methods have been proposed in the literature,
among them, the method of fundamental solution (MFS) approach
has gained attention among many engineering practitioners due to
its ease in implementation. In the MFS, solution is approximated by
a linear combination of fundamental solution across the nodes on
the boundary satisfying the governing equation. [23–27]. In the MFS
method, to avoid singularity of fundamental solution, a fictitious
circle that lies interior or exterior to the physical boundary of the
domain is considered for placing the source points. The distance at
which this fictitious circle should be placed is still an open problem,
especially, with irregular shaped boundary of domain. Generally, it is
determined by experience or trial and error apporach hence the
solution is not reliable. Newly developed methods such as the
boundary collocation method [28,29], modified method of funda-
mental solution (MMFS) [30,31], singular boundary method (SBM)
[32,33] and boundary distributed source method (BDS) [34] are
proposed to overcome the drawback of the fictitious circle in MFS.
The above methods place the source and field points on the same
physical boundary and the singularity is handled in a different way.
In the boundary collocation method, a nonsingular solution is
chosen instead of the singular fundamental solution. In the MMFS
and SBM, fundamental solution at singular points are replaced by
origin intensity factor. The both methods differ in the way the origin
intensity factor is evaluated. The MMFS applies numerical integra-
tion whereas in the SBM an inverse interpolation technique is used
to evaluate the origin intensity factor [33,35]. A distributed source
across each source point is considered in BDS and the singular
fundamental solution is integrated over the areas of the distributed
source [34,36].

In SBM, to evaluate the origin intensity factor, few sample nodes
placed in the interior or exterior to the physical boundary are
needed. The location of these sample nodes have an effect on the
solution accuracy of SBM. An improved formulation of SBM is
proposed in [33] that avoids these sample nodes in evaluating the
origin intensity factor. It uses an inverse interpolation method and
substracting and adding back technique to evaluate the origin
intensity factor. The improved formulation has an analytic expression
for evaluating the diagonal terms of fundamental solution derivatives
(Neumann problem). However, in the case of diagonal terms for
fundamental solution (Dirichlet problem), it uses an indirect appor-
ach using inverse interpolation method. In the BDS method, an
analytic expression to compute the diagonal terms of fundamental
solution for a circular distributed source is easily derived. But, to
compute the diagonal terms of derivatives of fundamental solution,
an indirect method proposed by Sarler [37,38] is used. This indirect
method of evaluating diagonal elements leads to increase in com-
putational time and moreover the solution is not reliable. Kim [39]
proposed an improved boundary distributed source (IBDS) method,
where an analytic expression for diagonal elements of Neumann
boundary conditions is derived by considering the fact that the
boundary integration of the normal gradient of potential should
vanish. IBDS method thus has analytic expressions for determining
the diagonal elements of both Neumann and Dirichlet conditions.
The IBDS solution is stable with good accuracy moreover it is
computationally efficient due to the elimination of indirect method
to evaluate diagonal elements [39]. IBDS method is formulated to
solve ERT forward problem using complete electrode model [40] and
its solution is compared against FEM and BEM.

In this paper, IBDS method is applied to visualize two phase
flow monitoring to locate voids or cavities that appear in process
vessel using electrical resistance tomography. The conductivity of
background substance is assumed to be known a priori while the

location and shape of void are the unknowns to be detemined. The
boundary of void is parameterized using truncated Fourier series
and the coefficients of Fourier series are estimated using Leven-
berg–Marquardt method. The IBDS method is truly meshless and
evaluates the diagonal terms corresponding to Dirichlet and
Neumann boundary conditions analytically. Therefore, it is com-
putationally efficient and the forward solution is stable. The
proposed method is tested with numerical simulations and phan-
tom experiments and the reconstruction performance is compared
against BEM. The results show a promising peformance of mesh-
less IBDS method with LM for the identification of voids or
cavities.

The reminder of the article is organized as follows. In Section 2, at
first, a mathematical model of ERT physical model is described and
then forward problem is formulated using meshless IBDS method. At
last, in Section 2, boundary parameterization of cavities is described.
The inverse problem of estimating the boundary parameters of void
is given in Section 3. In Section 4, we present the results of
reconstructing the boundaries of cavities using numerical simula-
tions and laboratory experiments. Finally, concluding remarks are
given in Section 5.

2. ERT forward problem and IBDS method

2.1. Mathematical description of ERT physical model

ERT has L discrete electrodes elðl¼ 1;2;…; LÞ attached on the
boundary ∂Ω of industrial process vessel. Currents of magnitude
Ilðl¼ 1;2;…; LÞ are injected through the electrodes into the domain
Ω that comprises of substances from the industrial process and the
resultant excited voltages are measured over the surface of the
electrodes. The relationship between the internal conductivity
distribution σ and the electrical potential u on Ω is governed by a
partial differential equation derived fromMaxwell equations, i.e. [3]

∇�σðpÞ∇uðpÞ ¼ 0; p¼ ðx; yÞAΩ ð1Þ

where p refers to the spatial location (x, y) within the domain Ω.
Let us consider two-phase flow inside pipeline or process

vessel such that a void appears in the flow domain Ω surrounded
by the background liquid. The void occupies region D in the flow
domainΩ and has conductivity σa embedded in the homogeneous
background liquid with conductivity σb (Fig. 1). The conductivity
distribution inside the flow domain Ω can be represented as

σðpÞ ¼ σbþðσa�σbÞχDðpÞ ð2Þ

where χDðpÞ is defined as a characteristic function that has a value
of 1 within the region D and zero otherwise. If the conductivities
are assumed to be known a priori as in the case of two-phase flow,
the conductivity estimation problem is transformed into a shape
estimation problem [8]. If the conductivities of void and back-
ground are assumed to be constant then the governing equation
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Fig. 1. Process vessel with electrodes attached over its periphery to estimate the
shape and location of void embedded within the homogeneous background.
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