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This paper studies properties of integral operators and solutions for CVBIE (complex variable boundary
integral equation) in plane elasticity for multiply connected regions. Four cases for considered regions
are studied. For the individual case, we study (a) the domain field equality, (b) the null field BIE and
(c) the usual CVBIE. Properties of integral operators or the kernels are studied in detail, which is based on
the properties of Cauchy type integral. The Neumann problem is considered. It is shown that for finite
region cases (Sections 2 and 3) the CVBIE allow three modes of rigid motion along contours under the
traction free condition. In addition, for infinite region cases (Sections 4 and 5) the CVBIE does not allow
three modes of rigid motion.
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1. Introduction

The boundary element method (BEM) is a numerical technique
based on boundary integral equation (BIE), which was developed
by some pioneer researchers [1-4]. Comparing with the finite
element method, the BEM has a well-known dimensionality
advantage. Therefore, the numerical procedures based on BIE
become the third important technique in the numerical analysis
of elasticity problem [5].

In the BIE, there are two kinds of formulation, for example, in
plane elasticity. One is the direct BIE method, and other is the
indirect BIE method [5,6]. In the direct BIE method, the unknown
functions are the displacements and tractions along the boundary.
However, in the indirect BIE method the unknown function is an
intermediate function. Since both methods reflect the nature of
the governing equation, for example, the Laplace equation, both
methods can be used to solve the boundary value problem (BVP).
For the boundary value problem of Laplace equation, the direct
and indirect BIE methods were summarized [5].

Generally, the Somigliana identity is used in the direct method
of BIE for elasticity problem [4,5]. Clearly, the Somigliana identity
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is a result of usage of Betti's reciprocal theorem between the
fundamental field and the physical field.

However, the BIE formulations for elasticity problem suffer
some inconvenient points. For example, at a particular size of
domain for the Dirichlet boundary value problem in plane elasti-
city, a displacement-stress field can be found in the studied region
even vanishing displacement is assumed along the boundary. The
mentioned problem is called the degenerate scale problem in BIE.
Many researchers studied this problem [7-9]. Clearly, the degen-
erate scale represents an illness condition and researchers must
avoid using the degenerate scale in real computation.

One more important topic in plane elasticity is uniqueness of
solution for displacement in the Neumann boundary value pro-
blem. To this end, one must study some operators acted upon the
displacement in detail.

Based on a general, operational approach, two new integral
identities for the fundamental solutions of the potential and
elastostatic problems were established in the paper [10]. Non-
singular forms of the conventional boundary integral equations
(BIEs) are derived by employing these two identities for the
fundamental solutions and the two terms subtraction technique.
The non-singular nature of the boundary integral equations (BIEs)
in the boundary element method (BEM) was discussed in the
paper [11]. After some substitution, one can arrive at a weak
singular of the BIE in plane elasticity. Four integral identities
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satisfied by the fundamental solution for elastostatic problems are
reviewed and slightly different forms of the third and fourth
identities were presented [12].

A new kernel with formulation of the relevant BIE in plane
elasticity was introduced [13,14]. The new kernel is derived from a
fundamental solution expressed in a pure deformable form (see
Appendix A). If the kernel is used, the regularity condition at
infinity is satisfied for any loadings applied on the contours. The
derivation for the domain field equality was based on the
Somigliana identity in the complex variable form [15]. The gen-
eralized Sokhotski-Plemelj's formulae are used to obtain the
CVBIE. Properties of integral operators in CVBIE in plane elasticity
are studied. The regularity condition at infinity in the exterior
boundary value problem of plane elasticity was studied [16]. It is
found that the usual suggested kernel does not satisfy the
regularity condition at infinity when the loadings on contours
are not in equilibrium. A new kernel from a revised displacement
expression in the fundamental field is suggested, which satisfies
the regularity condition at infinity in the general loading case
along the contours. Recently, an approach is suggested to study the
regularization of the non-unique solution [17].

This paper studies properties of integral operators and solu-
tions for CVBIE in plane elasticity for multiply connected regions.
The following four particular cases are studied: (a) boundary value
problem for an interior region (in Section 2), (b) boundary value
problem for a finite multiply connected region (in Section 3),
(c) boundary value problem for an exterior region (in Section 4)
and (d) boundary value problem for an infinite multiply connected
region (in Section 5). For the individual case, we study (a) the
domain field equality, (b) the null field BIE and (c) the usual CVBIE.
Properties of integral operators or the kernels are studied in detail,
which is based on the properties of Cauchy type integral. The
Neumann problem is considered. It is shown that for finite region
cases (Sections 2 and 3) the CVBIE allows three modes of rigid
motion along contours under the traction free condition along
contours. In addition, for infinite region cases (Sections 4 and 5)
the CVBIE does not allow three modes of rigid motion along
contours under the traction free condition along contours.

2. Formulation and properties of solutions for CVBIE for the
interior region

The way for the formulation of CVBIE for the interior region is
introduced (Fig. 1). Prosperities for kernels and solutions for of
CVBIE for the interior region are analyzed in detail.
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2.1. Some preliminary knowledge in complex variable method of
plane elasticity

The complex variable function method plays an important role
in plane elasticity. Fundamental of this method is introduced. In
the method, the stresses (ox, 6y, 6xy), the resultant forces (X, Y) and
the displacements (u, v) are expressed in terms of complex
potentials ¢(z) and y(z) such that [18]

ox+0y =4Red(2),

oy —0x+2ioy, =229 (2)+ ¥ (2)] (1)
f=-Y+iX=0@+2¢' @) +y(2) )
2G(u+iv) = kp2)—2¢'(2) —y(2) 3)

where @(2) = ¢'(z), ¥(z) =y'(2), a bar over a function denotes the
conjugated value for the function, G is the shear modulus of
elasticity, k = (3—v)/(1+v) in the plane stress problem, x =3 —4v
in the plane strain problem, and v is the Poisson's ratio. Some-
times, the displacements u and v are denoted by u; and u,, the
stresses oy,0y, and oy, by 61,0, and o1, the coordinates x and y by
x1 and x;.

Except for the physical quantities mentioned above, from
Egs. (2) and (3) two derivatives in specified direction (abbreviated
as DISD) are introduced as follows [19,20]:
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It is easy to verify that J; = oy +ionr denotes the normal and shear
tractions along the segment z,z+dz (Fig. 1). Secondly, the J; and J,
values depend not only on the position of a point “z”, but also on
the direction of the segment “dz/dz".

2.2. Formulation of CVBIE for the interior region

In the following analysis, the a-field shown by Fig. 1(a) is
relating to the fundamental field caused by concentrated force at
the point z=7. The relevant complex potentials are as follows
[18]: F
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Fig. 1. (a) The a-field with the concentrated forces applied at z =, (b) the p-field, or the physical field defined on a finite region.
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