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a b s t r a c t

In this paper a stable and modified form of the Levin method based on Bessel radial basis functions is
employed for numerical solution of highly oscillatory integrals. In the proposed technique, the multi-
quadric radial basis function (Levin, 1982 [1]; Siraj-ul-Islam et al., 2013 [2]) is replaced by Bessel radial
basis functions (Fornberg et al., 2006 [3]) and thin plate spline of order three. In this scheme the
integration form is first transformed into differential form and then the numerical solution of the
corresponding differential form is found. The accuracy and the algebraic stability in the form of well-
conditioned coefficient matrices of the proposed methods are confirmed through numerical experi-
ments.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The exact solution of highly oscillatory integrals and integrals
with and without stationary points is difficult to obtain. So, an
alternate way is to use numerical techniques, for highly oscillatory
integrals. Computational scientists and mathematicians have focused
their attention on the construction of efficient and accurate numer-
ical methods in an effort to encounter challenges being faced in the
evaluation of highly oscillatory integrals. Highly oscillatory integrals
occur in a variety of applications including quantum mechanics,
electromagnetic waves, optics and acoustics and their correct evalua-
tion is one of the key research problems [4–10].

Strategies regarding finding numerical solution of highly oscil-
latory integrals reported in the literature are sparse and this area
has remained unattended by and large. In the absence of specia-
lized and accurate procedures, conventional quadrature methods
were mostly used for the numerical solutions of highly oscillatory
integrals. The use of conventional quadrature rules is counter
productive due to bad accuracy and high computational cost.

In a univariate case, the above-mentioned highly oscillatory
integrals are uniformly represented as

I ¼
Z b

a
f ðxÞeiwgðxÞ dx ð1Þ

where f(x) is called the amplitude, g(x) is a phase function, f(x) and
g(x) are both smooth functions. The parameter ωZ0, called the
frequency parameter, mainly responsible for oscillatory behavior
of the integrand. The integrand given in Eq. (1) may or may not
have critical point(s). In the case of stationary points of Eq. (1) at a
point x, g0ðxÞ ¼ 0 for xA ½a; b�.

When there are no stationary points in ½a; b� and larger the
frequency ω, the traditional methods like Gauss–Legendre quad-
rature, Simpson rule, etc. fail to approximate the integral given in
Eq. (1) accurately and efficiently. In the case of highly oscillatory
integrals, apart from accuracy, these methods do not converge fast
to the actual solution even on a dense grid. Therefore, specialized
algorithms are needed to get an accurate and a stable solution of
such type of integrals.

The methods specified for the numerical solution of highly
oscillatory integrals are categorized into two main groups, Levin's
type of method [1] and Filon type of method [11]. The former
converts the oscillatory integrals into a differential form and
subsequently collocate monomial [1] basis or any other basis like
multiquadric [2] to get solution of the corresponding differential
equation. Filon's approach tackles such integrals in a different way
which is mainly based on the asymptotic theory. Some of the
methods which are based on Filon's approach and are specially
designed for numerical solution of highly oscillatory integrals are
reported in [11–16]. The contributions based on Levin's approach
are reported in [1,2,4,5,17,18]. The limitation of the Filon method is
that they can only deal with linear phase functions, whereas in
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practical situation one may have nonlinear phase functions as
well. The specific contributions of the paper are the following:

(i) Numerical approximation of highly oscillatory integrals using
modified Levin's method based on meshless procedure using
Bessel RBFs of orders 5, 7 and 9 and thin plate spline of
order three.

(ii) The method is validated on different nonlinear, linear and
periodic oscillators.

(iii) The comparative performance of different basis functions
namely MQ RBF, BRBF5–BRBF9 and TPS3, in the context of
numerical solution of highly oscillatory integrals with and
without stationary point has been thoroughly examined.

To cope with issues related to highly oscillatory integrals, a hybrid
method based on MQ RBF and hybrid functions has been pre-
sented in [2]. The method [2] which is based on MQ RBF is the
modified form of the traditional Levin's approach [1], where
monomial basis has been replaced by MQ RBF. Due to spectral
accuracy, MQ RBF is a preferred choice versus monomial. The
applications of the MQ RBF, which are related to the numerical
solution of the PDEs, are included in [7,18–26].

Apart from accuracy, both the algorithms [1,2] are still confronted
with a major issue of ill-conditioned coefficient matrices. The result-
ing linear systems are often ill-conditioned, which is the main reason
behind the numerical instability. In the case of monomials, it is the
Vandermonde matrix which is highly ill-conditioned and in the case
of MQ RBF, it is dense RBF matrix depending on a shape parameter c
which causes ill-conditioning. The choice of shape parameter c in the
MQ RBF can destabilize the algorithm if chosen out side a permissible
range. One cannot find at the same time both, good conditioning and
good accuracy, in numerical methods [1,2].

In this situation a relatively better trade-off between accuracy
and numerical stability of the algorithm [2] is proposed in this
paper. In the current work, we suggest a meshless procedure
based on truncated oscillatory radial basis functions [3] instead of
monomials and MQ RBF. Truncated oscillatory radial basis func-
tions have been investigated in [3], and can be written as

ϕðrÞ ¼ Jðd=2Þ�1ðcrÞ
ðcrÞðd=2Þ�1

; d¼ 1;2;3;… ð2Þ

where Jα represents a Bessel function of order α, c is the shape
parameter and r is the radial distance.

Truncated oscillatory radial basis functions [3] have a dual advan-
tage in terms of less shape parameter sensitivity and a well-
conditioned linear system. These RBFs have some disadvantages in
terms of accuracy which is lower than theMQ RBFmethod [2] and the
fact that we have not found any apparent relationship between the
inherent oscillatory character of the Bessel radial basis functions for
the solution of oscillatory integrals. Due to advantages mentioned
earlier, Bessel radial basis functions are worth investigations in the
context of different numerical applications. Truncated oscillatory
radial basis functions are using Bessel functions as building blocks
and henceforth named as Bessel radial basis functions. In this paper
we consider the proposed method based on Bessel radial basis func-
tions for univariate highly oscillatory integrals. Extension of the pro-
posed algorithm to multi-variate cases is a straight forward procedure.

The paper is organised as follows: in Section 2, the meshless
procedure based on different types of RBFs is described. In Section 3,
numerical results and discussion are given. In Section 4, some
conclusion are given.

2. Meshless procedure

A univariate continuous function, defined for r which is a
positive real number, may or may not have a free parameter called
an RBF ϕðrÞ. The free parameter is called the shape parameter of
the RBF, where c stands for the shape parameter. The following
form is used for an RBF interpolant, for a set of n centers xc1;…; xcn,
given in R:

PðxÞ ¼ ∑
n

k ¼ 1
βkϕðJx�xck J2; cÞ; xAR: ð3Þ

where βk, k¼ 1;2;…;n are the RBFs coefficients.
In this paper we propose Bessel radial basis functions of orders

5, 7 and 9 and thin plate spline of order 3 instead of monomials
and MQ RBF for the numerical solution of the differential form
resulted to Levin's method.

The Bessel radial basis functions of orders 5, 7 and 9 are
described in the following order [3].

Bessel radial basis function of order 5 (BRBF5) is given as
follows:

ϕðrÞ ¼
ffiffiffiffi
2
π

r
sin ðcrÞ�cr cos ðcrÞ

ðcrÞ3

" #
: ð4Þ

Bessel radial basis function of order 7 (BRBF7) can be written as

ϕðrÞ ¼
ffiffiffiffi
2
π

r
3 sin ðcrÞ�3 cr cos ðcrÞ�ðcrÞ2 sin ðcrÞ

ðcrÞ5

" #
: ð5Þ

Bessel radial basis function of order 9 (BRBF9) is given as follows:

ϕðrÞ ¼
ffiffiffiffi
2
π

r
15 sin ðcrÞ�15 cr cos ðcrÞ�6 ðcrÞ2 sin ðcrÞþðcrÞ3 cos ðcrÞ

ðcrÞ7

" #
: ð6Þ

where r¼ ðx�xiÞ, i¼ 1;2;…;n.
In [3], the following theorem which provides a foundation for

the existence of inversion of the coefficient matrix for the inter-
polation problems has been proved.

Theorem 1. The radial functions given by Eq. (2) will give non-
singular interpolation in up to d dimensions when dZ2.

Similarly thin plate spline of order 3 (TPS3) which is a shape
parameter free RBF is defined as

ϕðrÞ ¼ ð
ffiffiffiffiffi
r2

p
Þ3; ð7Þ

where r2 ¼ ðx�xiÞ2, i¼ 1;2;…;n.
MQ radial basis function which has been used in [2] for highly

oscillatory integrals is given as follows:

ϕðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p
ð8Þ

where r2 ¼ ðx�xiÞ2, i¼ 1;2;…;n and c is the shape parameter.
The first derivative of BRBF5 is given as

ϕð5dÞ ¼
d
dr
ðϕðrÞÞ ¼

ffiffiffiffi
2
π

r
c

sin ðcrÞ
ðcrÞ2

�3ð sin ðcrÞ�cr cos ðcrÞÞ
ðcrÞ4

" #
: ð9Þ

The first derivative of BRBF7 is given as

ϕð7dÞ ¼
d
dr
ðϕðrÞÞ ¼

ffiffiffiffi
2
π

r
c

ð6cr sin ðcrÞÞ�ðcrÞ2 cos ðcrÞþð15 cos ðcrÞÞ
ðcrÞ5

�ð15 sin ðcrÞÞ
ðcrÞ6

" #
:

ð10Þ
The first derivative of BRBF9 is given as

ϕð9dÞ ¼
d
dr
ðϕðrÞÞ ¼

ffiffiffiffi
2
π

r
c

45 sin ðcrÞ�ð10cr cos ðcrÞÞ�ðcrÞ2 sin ðcrÞ
ðcrÞ6

þð105 cos ðcrÞÞ
ðcrÞ7

�ð105 sin ðcrÞÞ
ðcrÞ8

" #
: ð11Þ
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