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a b s t r a c t

In this study, a modified first-order Higdon's absorbing boundary scheme is proposed and incorporated
into the numerical manifold method (NMM) to reduce reflections from artificial boundaries induced by
truncating infinite media. The modified time-dependent absorbing boundary scheme can not only
consider the absorbing boundary and input boundary at the same artificial boundary, but also take the
effects of the incident angles into consideration by adjusting the velocities and strains of points at the
boundary automatically. For illustrating the efficiency of the proposed time-dependent absorbing
boundary scheme, comparisons between the results of the proposed method and the widely used
viscous boundary conditions for different incident angles are presented. The developed NMM is then
used to investigate wave attenuation and transmission across a joint in an infinitely long rock bar.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

To restrict the computational domain from the infinite domain
to a finite one with artificial boundaries is widely used for
numerically analyzing wave propagation in an infinite media.
However, the reflections introduced at the artificial boundaries
may cause the wave oscillation and numerical results distortion.
Therefore, additional techniques are needed to suppress non-
physical reflections on the artificial boundaries.

Kausel and Peek [1] applied the Boundary Integral Method (BIM)
to an infinite heterogeneous stratified soil corresponding to
dynamic loads with a high accuracy. However, the BIM initially
needs to seek a weak solution to the Green function which some-
times is unknown. Infinite element, which is easy to be incorpo-
rated into Finite Element Method (FEM) or Finite Difference Method
(FDM), was introduced for wave propagation in infinite media by
Chow and Smith [2] and Burnett [3]. However, the asymmetrical
local matrix introduced by the infinite element may cause the loss
of the symmetry after the near field wave discretization. The
perfectly marched layer technique, which can gradually reduce
the amplitude and speed of the wave, was introduced for the
absorption of time-dependent wave by Berenger [4] and Zhang and
Ballmann [5]. The wave speed and wave direction, which are
spatial-, time- and boundary-dependent, should be firstly estimated
by this technique. However, it is difficult to accurately estimate such

a complicated problem. Viscous boundary condition and viscous
elastic boundary condition, which replace the far field with viscous
damping, were used by Lysmer and Kuhlemeyer [6] and Deeks and
Randolph [7] to model the radiation of waves from the finite
element mesh into the far field. Though the viscous damping is
simple and easy to be achieved by numerical methods, its absorbing
effect is low for some incident angles [42].

Using the first-order one-way wave equation, Higdon [8–10]
constructed absorbing boundary conditions for the multi-
dimensional wave equation. By adjusting the parameters in the
boundary conditions, P- and S-waves induced by arbitrary incident
angle can be perfectly absorbed at the numerical boundaries. By
incorporating the Higdon's boundary operator, the FDM and FEM
can accurately evaluate the spatial- and time-dependent wave
speed and wave direction and were successfully used to solve the
time domain infinite problems [11–14].

Although the Higdon's boundary operator is compatible to both
continuous- and discontinuous-based numerical schemes, in all of
the previous references, the numerical schemes for solving time
domain infinite problems are the continuum-based methods (FDM
and FEM). However, rock mass is an inhomogeneous and anisotropic
geological material consisting of both continuous rock medium and
discontinuous components, such as joints, cleavages, beddings and
even faults. During the wave propagation, opening, closing, sliding,
detaching and even evolution along these existing discontinuities can
occur. Although both continuum-based and discontinnum-based
methods provide useful means to analyze the wave propagation in
rocks, to model such complex processes are still challenging [15–18].
Actually, the rock mass is neither continuous nor discontinuous but

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2014.04.026
0955-7997/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: robert248@zju.edu.cn (L. Fan).

Engineering Analysis with Boundary Elements 46 (2014) 41–50

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2014.04.026
http://dx.doi.org/10.1016/j.enganabound.2014.04.026
http://dx.doi.org/10.1016/j.enganabound.2014.04.026
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.026&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2014.04.026&domain=pdf
mailto:robert248@zju.edu.cn
http://dx.doi.org/10.1016/j.enganabound.2014.04.026


the integration of two, which can be better represented by the hybrid
methods.

The Numerical Manifold Method (NMM), which is based on the
partition of unity method (PUM) [19], is such a hybrid method. It
combines the widely used continuum-based method FEM and
discontinuous-based method discontinuous deformation analysis
(DDA) in a uniform framework. The most innovative feature of the
NMM is its adoption of two cover systems. By simply cutting the
mathematical cover (MC) with the discontinuity, the physical cover
(PC) will be separated and the discontinuity will be captured without
further requirement of incorporating enrichment functions. Due to
its capability in dealing with continuous–discontinuous problems,
the NMM has been successfully extended to simulate the cracking
involved failure problems [36–39] as well as wave propagation
problems in rocks [15,20]. In previous work, either the extended
computational domain or just the viscous boundary condition [6,21]
was adopted. The absorbing efficiency of the incorporated scheme,
however, has not been fully discussed yet.

In this study, a modified first-order Higdon's absorbing
boundary scheme is incorporated into the NMM to reduce
reflections from artificial boundaries induced by truncating
infinite media. The modified time-dependent absorbing bound-
ary scheme can consider both of the absorbing boundary and
input boundary at the same artificial boundary. Moreover, it can
also take the effects of the incident angles into consideration by
adjusting the velocities and strains of points at the boundary
automatically. For illustrating the efficiency of the proposed
time-dependent absorbing boundary scheme, the comparisons
between the results of the proposed method and the widely used
viscous boundary conditions [6,21] for different incident angles
are presented. The developed NMM is then used to investigate
the wave attenuation and propagation across a joint in an
infinitely long rock bar, which demonstrates the potential appli-
cation of the developed NMM in modeling wave propagation
through fractured rock at infinite media.

2. NMM for time-dependent absorbing boundary conditions

2.1. Brief introduction of the NMM

The background of the NMM was thoroughly described in the
previous literatures [15,20,36-41]. As such, only the essential
fundamentals are covered below.

The core and most innovative feature of the NMM is the
adoption of a two cover (mesh) system, on which the nodes and
elements are generated. To build a NMMmodel, the finite covering
of a problem domain is the basic procedure.

The finite cover systems employed in the NMM are referred to
the mathematical cover (MC) and physical cover (PC), respectively
[22]. The MC, which is used for building PCs, can be either a mesh
of regular pattern or a combination of some arbitrary figures.
However, the whole mesh has to be large enough to cover the
whole physical domain. The physical mesh, which includes the
boundary of the material, joints, cracks, blocks and interfaces of
material zones, is a unique portrait of the physical domain of a
problem, and defines the integration fields. The intersection of the
MC and the physical mesh, or the common area of the two
systems, defines the region of the PCs. A common area of these
overlapped PCs or an independent PC corresponds to an element
in the NMM.

Fig. 1 illustrates the basic constructing procedures of the finite
covering system adopted in the NMM. As illustrated in the figure,
the mathematical meshes are formed firstly from the MCs, such as
the rectangular MC M1 and the circle MC M2 constitute the
mathematical mesh of the problem. From the formed

mathematical mesh and the physical boundaries, the PCs are
defined. For example, MC M1 intersecting with the physical
boundary Γu and the discontinuity boundary ΓD forms the PCs
P1
1, P12 and P1

3, while the MC M2 intersecting with the physical
boundary Γu forms PCs P2

1 and P2
2. Finally, the NMM elements are

created by overlapping these PCs, such as the element E3, E4 forms
from the overlapping of PCs P12 and P2

2, P13 and P2
2, respectively. The

left independent areas of PCs then form the other manifold
elements, such as element E1 from PC P1

2, E2 from PC P1
3 and E5

from PC P2
2.

On each PC Pi, a local approximation function ui(x) is indepen-
dently defined. A convenient way for constructing a basis of local
approximation spaces is by using the polynomial functions. e.g.

lc ¼ f1; x; y;…; xp; xp�1y;…; xyp�1; ypg ð1Þ
where the superscript “c” stands for conventional PCs for a two-
dimensional problem.

Though the polynomials can approximate smooth functions
well and capture the discontinuity directly for the conventional
PCs, for PCs that are not fully intersected by the discontinuities
(such as PC P2

2 in Fig. 1), the smooth basis polynomial local
approximations can neither capture the high gradient at the crack
tips nor capture the jumps across the discontinuity surfaces.
Therefore, special singular functions may need to be used to
enrich the approximation space for capturing the singularities
without refining the meshes. In this study, the linear elastic
asymptotic crack-tip fields as proposed by Belyschko and Black
[23], which has been already successfully incorporated into NMM
for capturing the discontinuity among the singular cover [43,44],
are used as suitable enrichment functions for the singular PCs.
Then the enriched local approximation functions for singular PCs

Fig. 1. Illustration of the finite cover system in NMM.
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