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a b s t r a c t

The forward problem for complex electrical impedance tomography (EIT) is solved by means of a
meshless method, namely the method of fundamental solutions (MFS). The MFS for the complex EIT
direct problem is numerically implemented, and its efficiency and accuracy as well as the numerical
convergence of the MFS solution are analysed when assuming the presence in the medium (i.e.
background) of one or two inclusions with the physical properties different from those corresponding to
the background. Four numerical examples with inclusion(s) of various convex and non-convex smooth
shapes (e.g. circular, elliptic, peanut-shaped and acorn-shaped) and sizes are presented and thoroughly
investigated.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Electrical impedance tomography (EIT) is a technique used for
determining the admittivity distribution in the interior of an object,
given simultaneous measurements of alternating electric currents
(of frequencies varying from 10 Hz to 500 kHz) and of induced
voltages on the boundary of the object [12]. For a given conductive
object, the admittivity is a complex valued function whose real part
is the electrical conductivity and whose imaginary part is the
product of the frequency of the applied electric alternating current
and the permittivity of the object. Since different materials display
different electrical properties, a map of internal admittivity can be
used to infer the internal structure of the object under considera-
tion. Therefore, EIT can be used as a non-invasive and portable
method of industrial, geophysical and medical imaging [1].

The reconstruction procedures proposed for static EIT include a
wide range of iterative methods based on formulating the inverse
problem in the framework of nonlinear optimization [2,24,40,41].
These approaches usually involve estimating the admittivity distribu-
tion of the object under consideration and then solve the forward
problem (often using finite element methods [FEMs]) for the same

input current patterns to compute the boundary voltages and then
comparing the boundary data predicted by this estimate with the
measured data. The discrepancy between these two data sets is then
used to update the admittivity estimate and the procedure is repeated
until a satisfactory agreement is achieved. However, the solution of
the inverse problem in static EIT has suffered not only from its ill-
posedness due to the inherent insensitivity of boundary measure-
ments to any small changes of interior conductivity and permittivity
values and its poor spatial resolution, but also from its reliance on
accurate forward models which mimic every aspect of the imaging
object (e.g. knowledge of boundary geometry, electrode positions and
other sources of systematic artifacts in measured data). Hence, EIT
has had limited applicability so far in clinical applications. This has
encouraged the search of new reconstruction methods, such as the
time-difference EIT (tdEIT) or frequency-difference EIT (fdEIT). Even
though numerous tdEIT methods have been applied to image lung
functions, stomach emptying or brain functions [12,31,32], there are
medical applications where these time-reference data are not available
(e.g. breast cancer or cerebral stroke detection). Since complex
conductivity spectra of biological tissues show frequency-dependent
changes [8,32], fdEIT methods have been proposed to image the
changes in the admittivity distribution with respect to frequency
[11,13,22,38]. It has been showed that, although there are no visible
differences in the reconstructed frequency-difference images even
though the true admittivity distributions have a strong frequency
dependence, any anomaly can be clearly identified as long as its
admittivity differs significantly from that of the background which is
the case for tumour and stroke imaging.
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To achieve clinical acceptance, the theoretical developments of
EIT reconstruction methods need to be closely connected with
laboratory experiments and studies on real data. This implies
not only the modelling of the real geometry and data collection

devices but also the development of a computer software fast
enough to be used for real-time monitoring. However, optimized
image reconstruction techniques for EIT rely on computationally
efficient and numerically robust forward solvers. In this paper, we
address this need by presenting an algorithm based on the method
of fundamental solutions (MFS) which can be successfully used
to find the numerical solution of the EIT forward problem for
piecewise constant admittivity distributions to a high level of
precision.

The MFS is a meshless boundary collocation method applicable
to boundary value problems in which a fundamental solution
of the operator in the governing equation is known explicitly.
The basic ideas of this method were first introduced, in the early
1960s, by Kupradze and Aleksidze [23], whilst its numerical
formulation was first given by Mathon and Johnston [30] in the
late 1970s. The main idea of the MFS consists of approximating the
solution of the problem by a linear combination of fundamental
solutions with respect to some singularities/source points which
are located outside the domain. Consequently, the original pro-
blem is reduced to determining both the unknown coefficients
of the fundamental solutions and the coordinates of the source points
by requiring the approximation to satisfy the boundary conditions in
some sense and hence solving a non-linear problem. If the source
points are fixed a priori, then the coefficients of the MFS approxima-
tion are determined by solving a linear problem. The aforementioned
MFS procedures are referred to in the literature as the dynamic and
static approaches, respectively.

Despite its constraint on the knowledge of a fundamental
solution of the governing partial differential equation, the MFS

Fig. 1. Geometry of the problem. Possible placement of the sources for Ω0 ( ) and
Ωj, j¼ 1;2, ( ), and the collocation points (�).
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Fig. 2. The RMS error, errΓ1 ðv0�v1Þ, as a function of the number of sources N00Af1;2;…;M00g and N01Af1;2;…;M01g at t¼0 s and various numbers of collocation points,
namely (a) M¼80, (b) M¼120 and (c) M¼160, for Example 1.
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