
Regional connectivity in modified finite point method

Boe Shiun Chen, Ting-Kuei Tsay n, Kuo-Cheng Chiang, Chun-Wen Yang
Department of Civil Engineering, National Taiwan University, Taipei City 10617, Taiwan

a r t i c l e i n f o

Article history:
Received 14 August 2013
Received in revised form
4 May 2014
Accepted 5 May 2014
Available online 3 July 2014

Keywords:
Regional connectivity
Harbor resonance
Mild-slope equation
Mesh-less method
Modified finite point method
Local polynomial approximation
Amplification factor

a b s t r a c t

In this paper, a concept of regional connectivity has been integrated into the modified finite point
method (MFPM) [33] to solve problems with different physical behaviors in adjacent regions. This
approach has been employed to improve accuracy in its applications to harbor resonance of the MFPM,
which has searched adjacent nodes by relative distance for local collocation. By identifying regional
connectivity, only closer nodes within regions of the same regional connectivity with respect to a base
point can be included for correct local collocation. In coastal engineering, phenomenon of resonance
of harbors with breakwaters is a crucial consideration in harbor planning and design. Numerical
computations of harbor resonance induced by monochromatic water-waves are used to verify the MFPM
numerical model integrated with regional connectivity approach. The whole computational domain is
divided into several subdomains, based on different physical behaviors. After numbering of each
subdomain, regional connectivity is provided to exclude searching the nearest nodes from inappropriate
subdomains for local collocation.

Harbors of different physical geometries, with and without breakwaters have been examined when
analytical solutions [18] are available. Very good agreement between numerical results and analytical
solutions has demonstrated that the concept of regional connectivity has improved the performance of
MFPM. Application of this regional connectivity concept will be needed in similar problems, such as a
crack in a thin plate, and a cutoff of groundwater seepage.

& 2014 Published by Elsevier Ltd.

1. Introduction

Traditionally, the finite difference (FDM) or the finite element
(FEM) methods are used to solve the partial differential
equation (PDE) with boundary conditions. In general, the FDM is
easy to discretize the domain of interests, but encounters difficulty
in fitting discretized grids precisely on the irregular boundaries.
On the contrary, the FEM is more flexible to locate grids on the
irregular boundaries. In order to gain this advantage of flexibility
in FEM, information of grid connectivity must be provided for each
mesh or element, in addition to the positions of all grids. Preparing
the information of grid connectivity is quite tedious and time-
consuming, particularly if done manually.

Recently, many meshless methods are applied to establish
numerical models in many researches for problems in science
and engineering [9,17,32,35]. In meshless or mesh-free methods,
only positions of all grids are required for data input and
information of grid connectivity is no longer needed. Meshless
methods can be broadly divided into two categories collocation

method and Galerkin method. The Galerkin method is higher than
the collocation method in accuracy and stability, but numerical
integration is required. Without prior information of grids con-
nectivity it is difficult to achieve this goal. Instead, the approach of
collocation at a local base point is simple and straightforward.

Although radial basis function (known as RBF) is the most popular
and widely used [7,11,31,34] in meshless methods, there are quite a
number of choices of basis function for collocation method. Oñate
et al. [21,22] applied finite point method (FPM), by the polynomial
basis function and moving least square (MLS) to calculate convective–
diffusive problem and obtained good results. Ortega et al. [23,24]
applied the FPM [21,22] for shallow water equation and adopted an
upwind-biased discretization for dealing with convective terms. Wang
[30] studied ship waves by the finite element method (FEM), and
simultaneously applied local polynomial and moving least squares
approximation. One advantage of these approaches with polynomial
approximations, is the gradient of the velocity potential and other
physical quantities can be accurately evaluated at the same time as the
approximated solutions of velocity potential are obtained. The mod-
ified finite method (MFPM) [32,33] modifies the finite point method
applied by Oñate et al. [21] by using a polynomial local collocat-
ion method integrated with a moving least square (MLS) to satisfy
both governing equation and boundary conditions at each nodes
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everywhere within the domain and also along the boundaries. An
approach, like penalty method used in FEM, was integrated for the
boundary conditions additionally. It has been shown [32,33] that
better numerical approximation both within the interior domain and
on the boundaries simultaneously have been obtained.

Although MFPM like other meshless methods gains the advan-
tage of avoiding information of grid connectivity within a mesh
or element as one of the input data for numerical computations,
there are problems in engineering and science consisting of
different regions divided by a very thin barrier or crack and
behave with different physical characters, such as a breakwater
in water-wave diffraction, a crack in a thin plate and a cutoff in
groundwater seepage. In MFPM [32,33], the local collocation is
performed by searching some nearest nodes close to a chosen base
point. When physical behaviors in separated regions divided by a
thin barrier, it requires to identify the nodes searched by relative
distance from a base point are not from an inappropriate regions
with different physical behaviors. Therefore, it requires division of
the whole domain into subdomains of different physical behaviors.
After numbering each subdomain, information of regional con-
nectivity among subdomains is needed for node searching from
appropriate subdomains for correct local collocation. Therefore,
this approach required information of regional connectivity to
identify appropriate nodes for local collocation approximation.

In this paper, phenomenon of resonance for harbors of different
geometry, with or without breakwaters is examined by using
MFPM with regional connectivity approach. Numerical results are
compared for cases when analytical solutions are available [18].

2. Formulation of MFPM

In this paper, the numerical method of MFPM developed by
Wu and Tsay [33] is employed. For completeness, a brief descrip-
tion of MFPM is also shown here.

Taking a general problem governed by a 2-D linear-second
order PDE as an example, the governing equation is expressed as

L ϕ
� �¼ c1ϕþc2

∂ϕ
∂x

þc3
∂ϕ
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þc4
∂2ϕ
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þc5
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∂2ϕ
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¼ f ð1Þ

and the problem is subjected to the boundary conditions

B ϕ
� �¼ q1ϕþq2

∂ϕ
∂x

þq3
∂ϕ
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¼ g1;⋯ x!AΓ1 ð2Þ

ϕ¼ ϕb;⋯ x!AΓ2 ð3Þ
where the coefficients c1, c2, c3, c4, c5, c6, q1, q2, q3, f and g1 are all
functions of x and y. The entire domain can be distributed with N
nodes as needed. Following the concept of local polynomial
approximation in finite point methods, ϕð x!Þ can be approximated
in the vicinity of a specific position x!j as the base point, so that

ϕð x!Þj
x!� x!j

� ϕ̂jð x!Þ¼ ∑
m

i ¼ 1
αjipiðX
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in which X
,
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,�x
,
j is the relative position vector, piðX

,
Þ is the

ith monomial of the polynomial, and αji are coefficients to be
determined. Here, the number of monomials depends on the
dimension of x! and the chosen degree of the polynomial.

The choice of the degree of the polynomial used in the local
approximation depends on the problem to be solved. The dimension
of x! also depends on what problem is considered. For a 2-D problem
governed by a second order PDE, the choices of monomials are
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,
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.

To seek a local approximation in which the difference between
the exact and approximated values at x!j is smaller than those at
other points around x!j, one can use the function values at n points
in the neighborhood of x!j and couple with the moving least
squares (MLS) approach:

Ej ¼ Σn
k ¼ 1fWjk½ϕð x!kÞ� ϕ̂ð x!kÞ�g ð6Þ

in which Ej is the weighted square error for approximating
_
ϕ jð x!Þ

to ϕð x!Þ and Wjk is the weighting factor of the kth residual. The
value of Wjk is determined by the distance between x!j and x!k.
Usually, it is selected using a compactly supported RBF such as the
normalized Gaussian function.

Wjk ¼
exp½� εðrjk=ρjÞ2 ��expð� εÞ

1�expð� εÞ ; rjkoρj

0 ; rjkZρj

8<
: ð7Þ

where rjk is the distance between x!j and x!k (i.e. rjk ¼ j x!k� x!jj),
ε is the shape parameter, and ρj is the supporting range whose
subscript j denotes that it is just for the approximation in the
vicinity of x!j.

At each point, x!j, finding a local polynomial approximation
that satisfies the governing equation and the boundary conditions
corresponds to minimized the value of Ej, an alternative weighted
square error was introduced in Wu and Tsay [33].

Ej ¼ Σn
k ¼ 1ðWjkðϕðx

,
kÞ� ϕ̂jðx

,
kÞÞ2ÞþW

0
O¼ EjþW

0
O ð8Þ

where W
0
is an additional weighting factor and

O¼ ðLfϕg� f Þ2þðB1fϕg�g1Þ2þ ::::þðBnnd fϕg�gnnd Þ
2 ð9Þ

where nnd is the number of non-Dirichlet boundary conditions at
the node x!¼ x!j. No error-square term of Dirichlet boundary
condition is included in Eq. (9) because the boundary values are
already exact at these nodes. In case of nnd41, it is obvious that
the collocation point rests on an edge or at a corner. At internal
nodes (i.e. nnd ¼ 0), only the first term in Eq. (9) remains. Since all
the least square error terms of the solution in Eq. (8) are around
the same order, choosing W

0
much greater than Wjk, whose largest

value is 1, leads to O-0. The coefficients of the local polynomial
can be then formulated explicitly as
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where wk ¼
ffiffiffiffiffiffiffiffiffi
Wjk

p
; ϕk ¼ ϕð x!kÞ; _ϕk ¼

_
ϕjð x!kÞ; aki ¼wkpið x!k� x!jÞ

and w
0 ¼

ffiffiffiffiffiffiffi
W

0p
. It should be noted that this approximation is only

valid in the vicinity of x!j. Once a new x!j is chosen, the entries of

matrix ½Λ� and components of vector ½β� and ½β0 � should all be
renewed. In Eq. (13), the expression of zero-valued columns might
be unnecessary if the degree of the local polynomial is chosen the
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