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a b s t r a c t

This study presents a method to determine an equivalent mechanical model (EMM) for multi-baffled
containers with arbitrary geometries. The method is implemented for 2D and axisymmetric containers.
The Laplace equation and Green's theorem are used to develop the fluid model and the boundary
element method (BEM) is used to solve the fluid field governing equation. Moreover, a zoning method is
utilized to model arbitrary arrangements of baffles in multi-baffled containers and a reduced order
model is developed to model the free-surface sloshing. The exerted hydrodynamic pressure distribution,
forces and moments on the walls of the container are determined based on the Bernoulli equation and a
set of recursive formulation is presented to develop the model for multi-baffled containers.

The results are validated in comparison with the literature and very good agreement is achieved.
Furthermore, the effects of baffle attributes on the EMM parameters are also investigated and some
conclusions are outlined.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Periodic motion of fluid with free-surface in a liquid container,
which is called sloshing, and its effects on the dynamic of contain-
er's supporting system is a field of interest for many researchers.
The liquid sloshing leads to exert the hydrodynamic forces on the
walls of the container and can cause divergence or even damage of
it or failure in the system's function. So, the investigation of the
hydrodynamic forces and their effects on the dynamic character-
istics of the system are important concerns.

According to the importance of liquid sloshing, many valuable
studies have been done in this field. Abramson [1] and Ibrahim [2]
gathered lots of studies related to the sloshing in two distinct
comprehensive literature. Moreover, there are some other indivi-
dual research studies in this field. For example, Popov et al. [3]
investigated the dynamic of liquid sloshing in compartmented and
baffled rectangular road containers for some maneuvers and
presented analytical steady-state and numerical transient solu-
tions. Faltinsen and Timokha [4] developed a method to approx-
imate the natural sloshing frequencies and modes for a 2D circular
container. Wang et al. [5] determined the natural frequencies and
vibration modes in a rigid cylindrical container with annular
baffle.

Numerical methods are widely used in the field of fluid
dynamics to analyze the liquid sloshing in the containers with
complex geometries. Since the interaction of the fluid and struc-
ture occurs at their interface, it is sufficient to consider the
boundary of the fluid and container for evaluating the effect of
liquid sloshing on the container. That is why the BEM, which
concentrates on the boundary of the fluid and structure, is an
appropriate method for analyzing this kind of problems. Many
researchers such as Gedikli and Erguven [6], Firouz-Abadi et al. [7],
Noorian et al. [8] and Ebrahimian et al. [9] used BEM for
investigation of the linear and nonlinear sloshing, sloshing fre-
quencies and the effect of baffle on them for different container
geometries.

The existence of fluid inside a system may alter its dynamic
behavior. To approximate the fluid dynamics inside the containers,
some EMMs have been developed. In these models, the linear
planar liquid motion in a container is approximated by a series of
mass–spring–dashpot systems or a set of simple pendulums.
Graham and Rodriguez [10] introduced a mechanical model for
liquid sloshing in a rectangular container based on linear potential
theory. Roberts et al. [11] gathered design information and
investigated the effects of propellant sloshing on the structural
and control problems in a NASA report. Housner [12], Pinson [13],
Bauer [14] and Li and Wang [15] are some other researchers who
worked on the EMMs for different types of liquid containers.

Although all of the listed researchers have had significant
effects on development of the EMMs for simple geometries;
however, when the geometry is getting complicated, these models
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lose their effectiveness. Moreover, the existence of baffle influ-
ences the dynamic behavior of the fluid and leads to change the
EMM parameters which it has to be considered in the analysis.

In this study, an efficient method is presented to determine the
EMM parameters of liquid sloshing in 2D and axisymmetric multi-
baffled containers based on BEM formulation.

2. Governing equations

For the inviscid and irrotational flow, by assuming the existence
of a function as the potential of velocity, the governing equation of
the fluid can be explained by the Laplace equation [8]

∇2ϕ¼ 0 ð1Þ
where ϕ is the velocity potential function. Consider a moving
coordinate system (oxyz), which is named the slosh coordinate
system, with small lateral acceleration a and small angular velocity
ω in the inertia coordinate system ðOXYZ Þ, as shown in Fig. 1. The
slosh coordinate system is so defined that its z-axis is perpendi-
cular to the free-surface of the liquid. The non-slipping condition
on the walls of a rigid container is described as follows:

∂ϕ
∂n w ¼ rTnω
�� ð2aÞ

rn ¼ ðrw � nÞ ¼ ½rnx rny rnz�T ð2bÞ

where n is defined as the normal outside vector of the flow field
and rw ¼ ½x y z�T denotes the position vector of wall point in the
slosh coordinate system.

Based on the definition of the velocity potential function, the
kinematic condition of the free-surface and the unsteady Bernoulli
equation, the following boundary condition is obtained for the
free-surface of the fluid [7]:

∂ϕ
∂n

����
f
¼ �1

g
rTf _aþ €ϕf

� �
ð3Þ

where rf is the position vector of free-surface point in the slosh
coordinate system and ϕf is the velocity potential function of the
free-surface.

2.1. Boundary element model

Using Green's second identity and divergence theorem and
assuming ϕ and q¼ ∂ϕ=∂n as well-behaved functions for a flow
region with a boundary S, the following integral equation is

obtained [9]:

cpϕpþ
Z
S
ðϕqn�ϕnqÞ dS¼ 0 ð4Þ

where ϕn and qn are the fundamental solution of the Laplace
equation in the flow region and its derivation, respectively and cp
depends on the internal spatial angle at the source point p. Eq. (4)
can be solved using a BEM model for 2D and axisymmetric flow
fields [7–9]. By discretizing the boundary of the fluid into small
elements, the following equation will be achieved [9]:

Aϕ¼ Bq ð5Þ
where A and B are called the influence matrices of the fluid and ϕ
and q are the vectors of nodal potential and flux density of the
boundary element model, respectively.

2.2. Developing the BEM formulation for multi-baffled containers

Consider a multi-baffled 2D or an axisymmetric container as
shown in Fig. 2. Based on the discretizing method which is
presented in Ref. [9], one can divide a baffled container into a
number of zones so that the boundary of each zone can be divided
into two or three parts for interface and wall nodes, similar to
Fig. 2.

For a zone with one interface, such as the first zone of the
containers in Fig. 2, Eq. (5) can be written in the form of the
following set of equations:
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where i and w indices refer to nodes on the interface and walls,
respectively. A1

kj and B1
kj are the associated blocks of the influence

matrices of a zone with one interface. ϕ1
i , q

1
i , ϕ

1
w and q1

w denote
the nodal potential and flux density of the first interface and the
walls of the first zone, respectively. Substituting Eq. (2a) into Eq.
(6) gives the following equation for the nodal potential of the walls
of the first zone:
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where R1

n is a matrix that contains the rTn of the first zone's wall
points. Using these definitions, one can write the following
equation for the flux density of the first interface:
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where Z1
i and Z1

w are the interface influence matrices of the
first zone.

For the mth zone of the container which has more interfaces,
Eq. (5) can be written as the following set of equations [9]:
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By substituting Eq. (2a) into Eq. (9), one can achieve the nodal flux
density of the mth interface as follows:

qm
i ¼ Zm

i ϕm
i þZm

wω ð10aÞ

Fig. 1. Schematic view of a moving container in inertia coordinate system ðO X Y Z Þ.
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