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a b s t r a c t

Meshless methods are used for their capability of producing excellent solutions without requiring a
mesh, avoiding mesh related problems encountered in other numerical methods, such as finite elements.
However, node placement is still an open question, specially in strong form collocation meshless
methods. The number of used nodes can have a big influence on matrix size and therefore produce ill-
conditioned matrices. In order to optimize node position and number, a direct multisearch technique for
multiobjective optimization is used to optimize node distribution in the global collocation method using
radial basis functions. The optimization method is applied to the bending of isotropic simply supported
plates. Using as a starting condition a uniformly distributed grid, results show that the method is capable
of reducing the number of nodes in the grid without compromising the accuracy of the solution.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Collocation with radial basis functions is increasingly used in
order to solve systems of partial differential equations. This truly
meshless method is easy to implement and is adequate to complex
geometries, since no integrations in the domain are needed. In the
collocation with radial basis function scheme it is assumed that
any function, f may be written as a combination of N continuously
differentiable basis functions, g,

f ðxÞ ¼ ∑
N

j ¼ 1
βjgjðx�xj; εÞ ð1Þ

where gj depends on a distance d between N grid nodes with
coordinates x and may depend on a shape parameter ε. The shape
parameter, sometimes referred as a ’fine tuner’ is a non-zero input
parameter defined by the user. The user defined shape parameter
is a positive constant that may cause accuracy issues [1–4]. The use
of a radial basis function (the multiquadric radial basis function)
for interpolation was proposed by Hardy and later considered by
Franke as one of the best methods in terms of accuracy for scatter
data interpolation [5,6].

Kansa's unsymmetrical collocation method was used for the
solution of boundary-value problems. This method produces dense,

unsymmetrical, ill-conditioned matrices. High accuracy can be
obtained if adequate shape parameter is chosen.

Some authors use a simple expression with a constant shape
parameter for all grid nodes that considers an evolution of the
shape parameter related to the number of grid nodes [3]. Another
approach proposed by Kansa consists in using different values for
shape parameters at different node locations; usually a higher
value is used near boundaries [1,2].

Some optimization techniques have been proposed to choose a
good shape parameter. Rippa and Wang used a cross validation
technique for shape parameter optimization in multiquadric
interpolation [7,8]. The concept was extended by Roque and
Ferreira to Kansa's method for solving systems of PDEs [9]. Using
a cross validation technique it is possible to obtain good solutions
for plate bending problems, even with a reduced number of grid
nodes, for regular and irregular node distribution.

Another open issue that affects the quality of solutions is the
distribution of nodes for interpolation. Michelli demonstrated that
multiquadric surface interpolation is always solvable, for distinct
data sets [10]. Although any grid may be used, experience shows
that different node distributions produce different results. There-
fore, a given global error can be obtained with different number of
nodes and position.

In order to optimize node distribution for global collocation
method with radial basis function, some proposed techniques use
node adaptive grid strategies, usually using an error estimate to
determine the node insertion/remotion strategy [11]. Sarra used
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node adaptive method for 1D time dependent partial differential
equations [12]. Casanova et al. presented domain decomposition
technique with a node adaptive algorithm to solve PDEs [13].
Hon et al. [14] and Schaback and Wendland [15] used an adap-
tive greedy algorithm to optimized node distribution when
dealing with large radial basis functions systems. An adaptive
technique was also used by Hon for solving problems with
boundary layer [16].

More recently, Shanazari and Hosami used an equi-distribution
strategy to adapt node position for irregular regions [17] and
Esmaeilbeigi and Hosseini introduce a dynamic algorithm to per-
form a local node adaptive strategy in nearly singular regions [18].

Many problems in engineering depend on known discrete data,
not always uniformly distributed over the problem's domain and
many times scarce. Although the numerical method is easy to
apply to complex geometries and irregular grids, choosing a good
shape parameter and/or a good node distribution is important to
produce accurate solutions, especially in the presence of sparse
node grids. This is not an easy task when using irregular grids,
since most studies involving collocation with radial basis functions
are related to uniformly distributed grids. In this paper, the direct
multisearch method is used to find optimal node grid distributions
for a previously optimized shape parameter, ε. Results show that
although with a higher computational cost due to optimization,
the method is capable of finding good solutions for highly
irregular grids. The problem of plate bending proposed in the
present paper involves a system of partial differential equations
with three distinct variables (uw, ϕx and ϕy) corresponding to the
plate vertical displacement and two rotations about x- and y-axes,
respectively. The authors present, for the first time, a node
adaptation strategy based on a multiobjective optimization tech-
nique to analyze the bending of simply supported plates using a
meshless global collocation with radial basis functions. The objec-
tive is to minimize errors for all three variables uw, ϕx and ϕy and
also minimize the number of nodes in the grid, N. Since these can
be conflicting objectives, the use of a multiobjective optimization
technique allows to find not only one unique solution, but a set of
solutions, also known as Pareto solutions. The multiobjective
problem is solved using the direct multisearch (DMS) method [19].

2. Global collocation for PDE

Consider a boundary problem with domain ΩARn and with an
elliptic differential equation given by

LuðxÞ ¼ sðxÞ xAΩ�Rn

BuðxÞ ¼ f ðxÞ xA ∂Ω�Rn

(
ð2Þ

where L and B are differential operators in domain Ω and in
boundary ∂Ω, respectively. Nodes ðxj; j¼ 1;…;NBÞ and ðxj; j¼
NBþ1;…;NÞ are distributed in the boundary and on the domain,
respectively. The solution uðxÞ is approximated by ~u,

~uðxÞ ¼ ∑
N

j ¼ 1
βjgðJx�xj J ; εÞ ð3Þ

and inserting L and B operators in Eq. (3) we obtain the following
equations:

~uBðxÞ � ∑
N

j ¼ 1
βjBgðJx�xj J ; εÞ ¼ f ðxiÞ; i¼ 1;…;NB

~uLðxÞ � ∑
N

j ¼ 1
βjLgðJx�xj J ; εÞ ¼ sðxiÞ; i¼NBþ1;…;N

8>>>><
>>>>:

ð4Þ

where f ðxiÞ and sðxiÞ are the prescribed values on boundary nodes
and domain nodes, respectively. Solving the previous system in
order to β, it is possible to interpolate the solution by using Eq. (3).

In the present paper, the multiquadric radial basis function is
considered,

g¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðεrÞ2

q
ð5Þ

where r is the Euclidian distance between distinct grid nodes and
ε is a shape parameter.

3. First-order shear deformation theory

In this section, we briefly present the basic equations for the
first-order shear deformation theory (FSDT) for plates. A more
detailed review can be found in Reddy [20]. We seek the equations
of motion and the discretization of such equilibrium equations and
boundary conditions, by RBF interpolation.

Considering static analysis and isotropic plates, the displace-
ment field for the first order shear deformation theory is

Uðx; y; zÞ ¼ zϕxðx; yÞ
Vðx; y; zÞ ¼ zϕyðx; yÞ

Wðx; y; zÞ ¼wðx; yÞ ð6Þ

where U and V are the inplane displacements at any point ðx; y; zÞ,
w is the transverse deflection, ϕx and ϕy are the rotations of the
normals to the midplane about the y- and x-axes, respectively. The
thickness of the plate is denoted as h.

The strain–displacement relationships are given as

εxx
εyy
γxy
γxz
γyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

∂U
∂x
∂V
∂y

∂U
∂yþ ∂V

∂x
∂U
∂zþ ∂W

∂x
∂V
∂zþ ∂W

∂y

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð7Þ

Therefore strains can be expressed as

εxx
εyy
γxy
γxz
γyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

εð0Þxx

εð0Þyy

γð0Þxy

γð0Þxz

γð0Þyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
þz

εð1Þxx

εð1Þyy

γð1Þxy

γð1Þxz

γð1Þyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
; ð8Þ

where

εð0Þxx

εð0Þyy

γð0Þxy

γð0Þxz

γð0Þyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

0
0
0

∂w
∂x þϕx
∂w
∂yþϕy

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;
;

εð1Þxx

εð1Þyy

γð1Þxy

γð1Þxz

γð1Þyz

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

¼

∂ϕx
∂x
∂ϕy

∂y

∂ϕx
∂y þ

∂ϕy

∂x

0
0

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
: ð9Þ

The stress–strain relations can be expressed as

sxx
syy
τxy
τxz
τyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼

E
1�ν2

νE
1�ν2 0 0 0

νE
1�ν2

E
1�ν2 0 0 0

0 0 G 0 0
0 0 0 G 0
0 0 0 0 G

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ɛxx
ɛyy
γxy
γxz
γyz

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

ð10Þ

in which E, νand G¼ E=2ð1þνÞ are materials properties.
The equations of motion of the first-order theory are derived

from the principle of virtual displacements [20]. The virtual strain
energy ðδUÞ, and the virtual work done by applied forces ðδVÞ are
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