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a b s t r a c t

In the current work, a new aspect of the weak form meshless local Petrov–Galerkin method (MLPG),
which is based on the particular solution is presented and well-used to numerical investigation of the
two-dimensional diffusion equation with non-classical boundary condition. Two-dimensional diffusion
equation with non-classical boundary condition is a challenged and complicated model in science and
engineering. Also the method of approximate particular solutions (MAPS), which is based on the strong
formulation is employed and performed to deal with the given non-classical problem. In both techniques
an efficient technique based on the Tikhonov regularization technique with GCV function method
is employed to solve the resulting ill-conditioned linear system. The obtained numerical results are
presented and compared together through the tables and figures to demonstrate the validity and
efficiency of the presented methods. Moreover the accuracy of the results is compared with the results
reported in the literature.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many of natural Phenomena in Science and Engineering have
been modelled by non-classical boundary value problems. In these
non-classical models often some integral terms appear in the
boundary conditions or in the governing equations. These types of
problems constitute a special class of boundary value problems
which are widely appeared for mathematical modelling of various
processes of physics, heat transfer, ecology, thermoelasticity,
chemistry, biology, and industry [1–6]. In the current work a
numerical investigation would be given to approximate the solu-
tion of the following two-dimensional diffusion equation:

∂u
∂t

¼ α
∂2u
∂x2

þ∂2u
∂y2

� �
; x¼ ðx; yÞAΩDR2; tZ0; ð1:1Þ

with the following initial and boundary conditions:

uðx;0Þ ¼ f ðxÞ; xAΩ;

uðx; tÞ ¼ h1ðx; tÞ; xAΓ1; tZ0;

uðx; tÞ ¼ kðxÞμðtÞ; xAΓ2; tZ0;

∂u
∂n

ðx; tÞ ¼ h2ðx; tÞ; xAΓ3; tZ0; ð1:2Þ

and the non-classical boundary condition:

∬Ωuðx; tÞ dx¼mðtÞ; tZ0; ð1:3Þ
where uðx; tÞ and μðtÞ are unknown functions would be deter-
mined, the positive constant α denotes the thermal diffusivity,
f ðxÞ;h1ðx; tÞ;h2ðx; tÞ and kðxÞ are given sufficiently smooth func-
tions, Γ ¼ ðΓ1 [ Γ2 [ Γ3Þ is the closed curve bounding the region
Ω, (Γ1;Γ2;Γ3 are non-intersecting curves), Ω ¼ ðΩ [ ΓÞAR2

denotes the spatial domain and t is time.
The presence of the nonclassical term (1.3) in the boundary

conditions causes that the theoretical study of the problem is
connected with great difficulties and also the implementation of
many standard numerical techniques to solve this type of model is
often complicated. In the recent decades, many numerical techni-
ques have been developed and implemented by researchers to
solve some aspects of non-classical [7–13]. Specially, the numerical
investigation of the two-dimensional diffusion equation with non-
classical boundary conditions have been considered by many
researchers. Dehghan, has considered and well-used some numer-
ical methods based on the finite difference schemes to numerical
investigations of the two-dimensional diffusion equation with
non-classical boundary conditions [14–18]. Abbasbandy et al.
considered two aspects of the non-classical diffusion equation
with Dirichlet and Neumann boundary conditions and have
approximated the numerical solution of the problems by using,
the local Petrov–Galerkin (MLPG) process based on the Moving
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Least Squares (MLS) approximations [19,20]. Very recently, Kazem
and Rad [21] have presented and applied a meshless method
based on the radial basis functions to obtain approximate solution
of the two-dimensional diffusion equation with Dirichlet and
Neumann boundary conditions.

Recently, several meshfree techniques have been attracted
great attention and extensively used for numerically solving
various types of ordinary and partial differential equations. Mesh-
less techniques are classified into three categories: meshless
methods based on strong-forms (collocation methods), meshless
methods based on weak-forms and finally meshless methods
based on the combination of weak forms and collocation techni-
ques [22]. In the recent decade, several types of meshfree methods
based on the radial basis functions (RBFs) such as collocation
method based on the radial basis functions (Kansa's method)
[23–29] and radial point interpolation method based on the radial
basis functions [30–34] have been introduced and developed. The
RBF based methods are truly mesh-free methods, which do not
require extensive mesh generation and elements, also they are
flexible in dealing with problems by irregular domain or multi-
dimensional. Recently, a new approach based on the indirect RBF
collocation methods has been proposed and improved which use
the approximate particular solution of a given differential equation
based on the radial basis functions [35–39]. In this work, firstly the
method of approximate particular solutions (MAPS), which is
based on the strong formulation, is formulated and implemented
to numerical investigation of the problem (1.1)–(1.3), then a new
aspect of the local radial point interpolation method, which is
based on the weak formulation and using particular solutions
would be introduced and formulated to deal with the governing
problem (1.1)–(1.3).

2. Time discretization

For numerical investigation of the governing problem (1.1) with
conditions (1.2) and (1.3), firstly a time stepping strategy will be
used to discrete the time derivative. Here a general time discre-
tization approach based on the θ-weighted (0rθr1) finite
difference scheme is applied. By using the θ-weighted scheme,
time derivative of the governing problem (1.1) would be discre-
tized at two consecutive time levels n and nþ1 as follows:

θ
∂unþ1

∂t
þð1�θÞ∂u

n

∂t
¼ unþ1�un

δt
þOðδtÞ;

where δt ¼ tnþ1�tn is the time step size and un ¼ uðx; tnÞ. From
the recent relation and Eq. (1.1), the following relation could be
concluded:

unþ1�un

δt
CθαΔunþ1þð1�θÞαΔun;

where Δu¼ ðð∂2u=∂x2Þþð∂2u=∂y2ÞÞ denotes the Laplacian operator.
Clearly by rearranging the above relation, one could obtain

unþ1�θδtαΔunþ1 ¼ unþδtð1�θÞαΔun: ð2:1Þ
In the above implicit time integrated approach, by implementing
the initial condition as u0 ¼ uðx;0Þ the dependent variable at each
time level, un;nZ1, depends on previous time step un�1. Note
that by considering θ¼ 0;1;1=2 in relation (2.1), the resulting
equations are equivalent to forward difference, backward differ-
ence and Crank–Nicolson methods, respectively.

3. Space discretization

In this section two numerical schemes based on the truly mesh-
less methods are proposed to deal with the semi-discretized

problem (2.1) and boundary conditions (1.2) and (1.3). Both strong
and weak form approaches based on the method of approximate
particular solutions (MAPS) and meshless local Petrov–Galerkin
(MLPG) method are employed and performed to the problem. In
the methods the radial basis functions are employed as trial
functions to interpolate the Laplacian operator of the unknown
function in the problem (2.1).

3.1. The method of approximate particular solutions (MAPS)

In this section a numerical approach based on the method of
approximate particular solutions (MAPS) is employed to solve the
problem (1.1)–(1.3). Based on the MAPS the Laplacian of the
unknown function in nþ1-th time level in the given strong form
of semi-discretized problem (2.1) can be approximated and inter-
polated at each node in the region of the problem by a linear
combination of the radial basis functions (φðrjÞ) as

Δunþ1 ¼ ∑
N

j ¼ 1
λnþ1
j φðrjÞ; ð3:1Þ

where rj ¼ fJx�xj J ; xjAΩg denotes the Euclidean distance

between x and center points (xj) and fλnþ1
j gN

j ¼ 1
is a set of

unknown coefficients at nþ1-th time level to be computed.
Through this work the Multiquadrics (MQ) radial basis function
is used to interpolate the Laplacian operator in the relation (3.1).

The Multiquadrics (MQ) function, φðrjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2j þc2

q
, is the most

popular radial basis functions. The positive parameter c appearing
in MQ functions is called the shape parameter which dictates the
flatness of the multiquadrics function and also all of the MQ based
meshless methods have a key role to achieve an accurate and
stable scheme. The MQ function has been introduced and
employed by Hardy [40], it has infinite smoothness (MQAC1).
Madych [41] has established and presented an error bound as

Oðeqcλc=δÞ for interpolating a smooth function by using multi-
quadric function, where 0oλo1, δ is the maximum mesh size,
c is the shape parameter and q is a positive constant.

In the current work, the spatial domain is two-dimensional and
Laplacian operator can be given as Δ¼ 1=rðd=drðrðd=drÞÞÞ. Now an
approximate particular solution of unknown function at nþ1-th
time level (unþ1) can be easily obtained from (3.1). Indeed the
particular solution can be computed by repeated integration of
both sides (3.1) [39,42,43] as follows:

unþ1 ¼
Z

1
r

Z
r ∑

N

j ¼ 1
λnþ1
j φðrÞ

 !
dr dr

¼ ∑
N

j ¼ 1
λnþ1
j

Z
1
r

Z
rφðrÞ dr dr

� �

¼ ∑
N

j ¼ 1
λnþ1
j ψ ðrÞ; ð3:2Þ

where ψ ðrÞ is called particular solution correspond to the given
radial basis function φðrÞ. For the multiquadrics functions φðrÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2þc2

p
its corresponding particular solution is obtained as

ψ ðrÞ ¼ 1
9
ð4c2þr2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p
�c3

3
lnðcþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2þr2

p
Þ:

Now, based on the method of approximate particular solutions by
substituting the relations (3.1) and (3.2) in Eq. (2.1) and also
classical and non-classical boundary conditions (1.2) and (1.3),
and then by choosing N¼NΩþNΓ1

þNΓ2
þNΓ3

collocation nodes
fxigNi ¼ 1AΩ ¼ ðΩ [ Γ1 [ Γ2 [ Γ3Þ in such a way that NΩ and NΓi

denote the number of interior and boundary points of collocation
nodes, respectively, the following linear system of equations will
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