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a b s t r a c t

This short communication documents the first attempt to apply the singular boundary method (SBM) for
the stress analysis of thin structural elastic problems. The troublesome nearly-singular kernels, which
are crucial in the applications of the SBM to thin shapes, are dealt with efficiently by using a non-linear
transformation technique. Three benchmark numerical examples, ranging from thin films, thin shell-like
structures and multi-layer coating systems, are well studied to demonstrate the effectiveness of the
proposed method. The advantages, disadvantages and potential applications of the method to thin
structural problems, as compared with the boundary element (BEM) and finite element (FEM) methods,
are also discussed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Most practical problems can be solved effectively simply by recourse
to appropriately numerical methods, such as finite element (FEM),
finite differences (FDM) or boundary element (BEM) methods [1–4].
Still, there exist large classes of problems for which those traditional
methods are not an optimal or even viable option [5,6]. Among these
are thin films and thin-layered coatings subjected to spatially distrib-
uted forces whose lateral dimensions are large in comparison with the
scales of other material dimensions. In these problems, the size and
computational effort of a standard numerical model can be very large
or even prohibitive, see, for example, Refs. [7,8].

This difficulty is sidestepped herein by means of a hybrid approach
that combines the advantages of the BEM with the power of meshless
boundary collocation methods [9–15], a numerical tool that is referred
to as the singular boundary method, or SBM for short [16]. The main
idea is to fully inherit the dimensionality and stability advantages
of the former and the meshless and integration-free attributes of
the later. This method can be also viewed as one kind of modified
method of fundamental solutions (MFS) [17–23], which differs from
the traditional MFS in that the source points and collocation points
coincide and both are placed on the real boundary directly. Unlike

domain discretization methods such as the FEM or FDM, the SBM is a
boundarymethodwhichmeans that only the boundary of the solution
domain needs to be considered. This makes it particularly attractive for
the solution of boundary value problems in which the boundary is of
prime interest, such as inverse problems and free boundary problems.
Moreover, unlike the BEM, only a collection of boundary nodes is
required for the discretization of the problem under investigation in
the SBM. These features make the method very easy to implement, in
particular for problems in complex geometries and three dimensions.
Prior to this study, this method has been successfully tried for 2D
problems in potential theory [24] and linear elasticity [16]. Very
recently, the method has also been extended to solve 3D problems
in potential theory [25,26]. In recent years, a few different numerical
methods have been proposed and developed which are different but
also related to the method proposed in this paper. The methods dev-
eloped include, but are not limited to, the isogeometric boundary
element method [27–29], scaled boundary method [30], partition of
unity method [31], hybrid Trefftz elements method [32,33] and hybrid
crack elements method [34]. Furthermore, some interesting remarks
of the meshless methods and their engineering applications may be
found in the survey paper [35].

This short communication documents the first attempt to apply
the SBM for the stress analysis of thin structural elastic problems.
The treatment of the nearly singular kernels, which is a crucial
step in the application of SBM to thin shapes, is discussed in
details. For the text problem studied, promising SBM results with
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only a small number of nodes are obtained with the thickness-to-
length ratio of the structure is as small as 10�9, which is sufficient
for modeling most thin elastic materials as used in smart materials
and micro-electro-mechanical systems (MEMS). A brief outline of
the rest of this paper is as follows. The SBM formulation and its
implementation are briefly introduced in Section 2. Section 3
introduces a non-linear transformation used in the SBM for solving
thin structural problems. Followed in Section 4, the accuracy and
efficiency of the proposed method are tested on three benchmark
2D thin structural problems, in which the proposed SBM is com-
pared with the FEM and BEM. Finally, some conclusions and
remarks are provided in Section 5.

2. The SBM formulation for 2D elastic problems

The equilibrium equations for 2D problems in linear elasticity,
also known as the Navier equations, with respect to the displace-
ment tensor uiðxÞ, i¼ 1;2, can be stated as [16]

2
1�μ
1�2μ

� �
∂2u1ðxÞ
∂x21

þ∂2u1ðxÞ
∂x22

þ 1
1�2μ

� �
∂2u2ðxÞ
∂x1∂x2

¼ 0; xAΩ; ð1Þ

1
1�2μ

� �
∂2u1ðxÞ
∂x1∂x2

þ∂2u2ðxÞ
∂x21

þ 2
1�μ
1�2μ

� �
∂2u2ðxÞ
∂x22

¼ 0; xAΩ; ð2Þ

subject to the boundary conditions

uiðxÞ ¼ ui; xAΓuðDirichlet boundary conditionsÞ; ð3Þ

tiðxÞ ¼ ti; xAΓtðNeumann boundary conditionsÞ; ð4Þ
where μ is Poisson’s ratio, tiðxÞ denotes the component of the
boundary traction in the ith coordinate direction, ∂Ω¼ΓuþΓt

comprises the whole boundary of the domain Ω which we shall
assume to be piecewise smooth, ui and ti represent the prescribed
displacements and tractions, respectively.

The strains εijðxÞ, i; j¼ 1;2, are related to the displacement
gradients by the kinematic relations

εijðxÞ ¼
1
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; ð5Þ

and the stresses σijðxÞ, i; j; ¼ 1;2, are related to the strains through
Hooke’s law by

σijðxÞ ¼ 2G εijðxÞþ
μ

1�2μ
εkkðxÞδij

� �
; ð6Þ

where δij is the Kronecker delta and G is the shear modulus. The
customary standard Cartesian notation for summation over repea-
ted subscripts is used.

The boundary tractions tiðxÞ, i¼ 1;2, are defined in terms of the
stresses as

tiðxÞ ¼ σijðxÞnjðxÞ; xA∂Ω; ð7Þ
where njðxÞ is the direction cosine of the unit outward normal
vector at the boundary point x.

In the SBM, the displacements and tractions can be approxi-
mated by a linear combination of fundamental solutions with
respect to different source points x as follows
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X
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j A
m
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where i; j¼ 1;2, fαn
j gNn ¼ 1 represent the unknown coefficients,

ymAΩ¼Ω [ ∂Ω is the mth collocation point, xn stands for the
nth source point, the second order matrixes Am

ij and Bm
ij are defined

as the origin intensity factors, i.e., the diagonal and sub-diagonal
elements of the SBM interpolation matrix. It is interesting to note
that the proposed SBM sidesteps the troublesome fictitious bound-
ary issue associated with the traditional MFS by means of the
introduction of the aforementioned origin intensity factors, a
numerical strategy that isolate the singularities of the fundamen-
tal solutions. In Eqs. (8) and (9), Uij and Tij represent the displace-
ment and traction fundamental solutions for 2D elastic problems.
Their explicit expressions can be found in Ref. [36].

The accurate evaluation of origin intensity factors plays a key
role in the present method. Quite recently, Gu and Chen [37] have
provided an efficient algorithm for the direct calculation of the
above-mentioned origin intensity factors in the SBM formulation.
The proposed method can be successfully applied to 2D and 3D
SBM formulations, regardless of the specific class of problems
being considered and whatever the type and order of the singular
terms encountered. For completeness, the main results for 2D
elastic problems are summarized hereafter. Details on the deriva-
tions of some of these formulas can be found in Refs. [36,37]. The
origin intensity factors Bm

ij for Neumann boundary conditions (9)
can be expressed as

Bm
ij ¼

1
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τδijþ Imþ
X
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2
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where Lm is the half distance between the (m�1)th and (mþ1)th
nodes, Im is a regular function [37], and the symbol τ is defined as

τ¼
1; for interior problems;
0; for exterior problems:

(
ð11Þ

The origin intensity factors Am
ij for Dirichlet boundary condi-

tions (8) present a weak singularity of order ðln rÞ, which can be
directly set as an average value of the fundamental solution over a
portion of the boundary. Algorithms relating to the direct evalua-
tion of weakly singular integrals are widely available and more
details can be found, e.g., in Refs. [18,38]. Alternatively, the origin
intensity factors Aij can be calculated indirectly using the so-called
“inverse interpolation method” proposed in Ref. [16].

For a well-posed boundary value problem, the unknown coeffi-
cients fαn

j gNn ¼ 1 can be determined by collocating N observation
points on the boundary conditions from Eq. (8) for Dirichlet
problems and Eq. (9) for Neumann problems. Once all coefficients
are computed, the displacements and stresses at any point inside
the domain can be obtained directly using the following strong-
form formula

uiðyÞ ¼
XN
n ¼ 1

αn
j Uijðy; xnÞ; ð12Þ

σijðyÞ ¼
XN
n ¼ 1

αn
kDijkðy; xnÞ; ð13Þ

where yAΩ, Dijk are fundamental solutions for stresses [36].

3. The transformed SBM for thin structural problems

The numerical difficulty in the SBM is the nearly-singular
kernels which arise in both crack-like and thin structural pro-
blems. In such cases, the nodes on one side of the boundary
usually being too close to the nodes on the opposite side, leading
to the kernels present various orders of near-singularities. The nearly

Y. Gu et al. / Engineering Analysis with Boundary Elements 59 (2015) 1–72



Download English Version:

https://daneshyari.com/en/article/512426

Download Persian Version:

https://daneshyari.com/article/512426

Daneshyari.com

https://daneshyari.com/en/article/512426
https://daneshyari.com/article/512426
https://daneshyari.com

