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a b s t r a c t

This paper is concerned with the fictitious eigenfrequency problem of the boundary integral equation
methods when solving exterior acoustic problems. A contour integral method is used to convert the
nonlinear eigenproblems caused by the boundary element method into ordinary eigenproblems. Since
both real and complex eigenvalues can be extracted by using the contour integral method, it enables us
to investigate the fictitious eigenfrequency problem in a new way rather than comparing the accuracy of
numerical solutions or the condition numbers of boundary element coefficient matrices. The interior and
exterior acoustic fields of a sphere with both Dirichlet and Neumann boundary conditions are taken as
numerical examples. The pulsating sphere example is studied and all fictitious eigenfrequencies
corresponding to the related interior problem are observed. The reasons are given for the usual absence
of many fictitious eigenfrequencies in the literature. Fictitious eigenfrequency phenomena of the
Kirchhoff–Helmholtz boundary integral equation, its normal derivative formulation and the Burton–
Miller formulation are investigated through the eigenvalue analysis. The actual effect of the Burton–
Miller formulation on fictitious eigenfrequencies is revealed and the optimal choice of the coupling
parameter is confirmed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) has emerged as a power-
ful numerical tool for decades to solve many engineering pro-
blems, especially acoustic and electromagnetic problems. In
contrast to the finite element method (FEM), BEM has some
advantages, such as the high accuracy, the reduction of dimen-
sionality by one and the incomparable superiority in solving semi-
infinite or infinite wave propagation problems [1,2]. However,
some inherent shortcomings also exist [1,2]. One of them is the
fictitious eigenfrequency problem, also called the non-uniqueness
difficulty or the non-unique solution difficulty. It is well-known
that BEM based on the Kirchhoff–Helmholtz boundary integral
equation fails to yield unique solutions for exterior acoustic
problems at the eigenfrequencies of the associated interior pro-
blems [3]. These eigenfrequencies are usually called fictitious
eigenfrequencies because they have no physical meaning, but just

arise from the drawback of the boundary integral representation
when solving exterior acoustic problems. Over the last several
decades, a number of methods and formulations have been
proposed to tackle this problem, as surveyed in Ref. [4]. Among
them, two main methods appropriate for practical applications
have been widely applied. One is the combined Helmholtz integral
equation formulation (CHIEF) [3] which can successfully conquer
the problem at low frequencies [5]. The other is the Burton–Miller
formulation [6] which has been proved to circumvent the fictitious
eigenfrequency problem at all frequencies [5]. In the Burton–
Miller formulation, the Kirchhoff–Helmholtz boundary integral
equation and its normal derivative formulation are combined
together with a properly chosen coupling parameter. So far, many
applications of the Burton–Miller formulation further confirm the
effectiveness of the method; cf. [4] and references therein. How-
ever, is the Burton–Miller formulation really free of fictitious
eigenfrequencies? What happens to fictitious eigenfrequencies
when using the Burton–Miller formulation? In order to get the
answers to these questions, a boundary element eigenvalue
analysis technique is implemented in this paper.

Usually, eigenproblems can be solved naturally using FEM [7–10].
However, since the coefficient matrices involve wave number impli-
citly, the original eigenproblem for the Helmholtz equation becomes a
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nonlinear eigenproblemwhen formulated by BEM. Therefore, it is not
an easy task to solve acoustic eigenproblems using BEM. In order to
solve such problems, a number of transform methods have been
proposed [11–21], including the dual reciprocity method [11,12], the
particular integral method [13,14], the multiple reciprocity method
[15] and their applications [16–20]. Also, a numerical eigenvalue
analysis by the Galerkin BEM has been carried out in the framework
of the concept of eigenproblems for holomorphic Fredholm operator-
valued functions [22]. Advantages and disadvantages for some of
these methods have been discussed by Kamiya et al. [23] and Ali et al.
[24]. Furthermore, nonlinear eigenproblems of the vibro-acoustic
simulations formulated by coupled finite and boundary element
approaches have been solved in Refs. [25–27]. In addition to these
methods, the contour integral methods (CIM) have been recently
developed [28,29]. In this kind of methods, a nonlinear eigenproblem
is converted into a generalized eigenproblem whose dimension is
much smaller than the original one. The conversion is achieved by
solving a set of linear systems of equations, for instance the standard
boundary element systems of equations in the BEM eigenvalue
analysis. CIM has already been applied to solve nonlinear eigenpro-
blems formulated by the acoustic BEM [30,31] and the method of
fundamental solution (MFS) [32], and also nonlinear eigenproblems of
vibro-acoustic simulations formulated by a coupled finite and bound-
ary element approach [33]. In this paper, a CIM approach called the
block Sakurai–Sugiura (SS) method [28] is employed. Different from
other transform methods, CIM is implemented in the complex
domain, consequently it can also extract eigenvalues with large
imaginary parts. These complex eigenvalues cause more effort to
solve the problems, but they are usually not of interest. Therefore, this
is evidently a shortcoming of CIM in usual applications. However, in
the following it will be shown that this is quite the reason for the
choice of CIM in this paper.

In addition to the manipulation of strongly- and hyper-singular
boundary integrals included in the Burton–Miller formulation, the
choice of the coupling parameter in the formulation is also very
important. Burton and Miller in their pioneer paper [6] proved
mathematically that setting the imaginary part of the coupling
parameter nonzero guarantees unique solutions for exterior Neu-
mann problems. Meyer et al. [34] later recommended the choice of
the parameter as i=k based on numerical experiments, where i and k
are the imaginary unit and wave number, respectively. Terai [35]
clarified that the value as i=k is optimal for a time factor of e� iωt

whereas in case of eiωt , the optimal value should be � i=k. Optimal
values for the coupling parameter were proposed as functions of
wave number in order to minimize the condition numbers of the
appropriate integral operators in Refs. [36] and [37] for the indirect
and direct BEM approaches, respectively. The validity of the Burton–
Miller formulation for exterior Dirichlet problems was also confirmed
in Refs. [36,37] through numerical experiments. In this paper, the
optimal choice of the coupling parameter is confirmed in a new way
instead of the solution accuracy analysis in Ref. [34] and minimizing
condition numbers in Refs. [36,37]. Also, the validity of the Burton–
Miller formulation for exterior Dirichlet problems are demonstrated
through the fictitious eigenvalue analysis.

The remainder of this paper is organized as follows. BEM formula-
tions for acoustic problems are reviewed in Section 2. Nonlinear
eigenvalue analysis using the block SS method is introduced in
Section 3. The interior and exterior fields of a unit sphere with Dirichlet
and Neumann boundary conditions are analyzed in Section 4. Section 5
concludes the paper with further discussions.

2. BEM formulations

The Helmholtz equation which is the governing equation in
steady-state linear acoustics can be reformulated into a Kirchhoff–

Helmholtz boundary integral equation defined on the structural
boundary Γ as follows:

cðxÞpðxÞþ
Z
Γ
qnðx; yÞpðyÞ dΓðyÞ ¼

Z
Γ
pnðx; yÞqðyÞ dΓðyÞ; ð1Þ

where the coefficient cðxÞ depends on the position of the source
point x and is 1/2 when x is located on a smooth part of the
boundary, pðxÞ is the sound pressure, pnðx; yÞ the fundamental
solution, qðyÞ and qnðx; yÞ the normal derivatives of pðyÞ and
pnðx; yÞ, and y the field point. For a time factor e� iωt , we can write
pnðx; yÞ and qnðx; yÞ for three-dimensional acoustic problems as

pnðx; yÞ ¼ eikr

4πr
; ð2Þ

qn x; yð Þ ¼ � eikr

4πr2
1� ikrð Þ ∂r

∂n yð Þ; ð3Þ

where i is the imaginary unit, k¼ω=Cs is the wave number, ω is
the angular frequency, Cs is the sound speed and r is the distance
between x and y, i.e., r¼ jy�xj . The boundary conditions (BC) on
Γ are given as

Dirichlet BC : pðxÞ ¼ pðxÞ on Γp; ð4Þ

Neumann BC : qðxÞ ¼ iρ0ωvðxÞ on Γv; ð5Þ
where ρ0 is the medium density, vðxÞ is the normal velocity and
Γ ¼Γp [ Γv. The dash indicates that the value is known.

Eq. (1) which is also referred to as the conventional boundary
integral equation (CBIE) in this paper can be utilized to calculate
the unknown boundary values. However, BEM based on it fails to
yield unique solutions for exterior acoustic problems at the
eigenfrequencies of the associated interior problems [3]. These
eigenfrequencies are usually called fictitious eigenfrequencies
because they have no physical meaning but just arise from the
drawback of the boundary integral representation when solving
exterior acoustic problems. To overcome this difficulty, two main
methods appropriate for practical applications have been pro-
posed over the last several decades, i.e., the combined Helmholtz
integral equation formulation (CHIEF) [3] and the Burton–Miller
formulation [6]. The latter one which is a linear combination of
CBIE and its normal derivative is considered in this paper. It has
already been proved that this formulation is more rigorous to
circumvent the fictitious eigenfrequency problem than the CHIEF,
especially in the high frequency range [4,5].

The derivative of Eq. (1) in the direction of a normal vector nðxÞ
is given by

cðxÞqðxÞþ
Z
Γ
~qnðx; yÞpðyÞ dΓðyÞ ¼

Z
Γ
~pnðx; yÞqðyÞ dΓðyÞ; ð6Þ

where ~ðÞ ¼ ∂ð Þ=∂nðxÞ is the normal derivative, and

~pnðx; yÞ ¼ � eikr

4πr2
ð1� ikrÞ ∂r

∂nðxÞ; ð7Þ

~qnðx; yÞ ¼ eikr

4πr3
ð3�3ikr�k2r2Þ ∂r

∂nðxÞ
∂r

∂nðyÞþð1� ikrÞniðxÞniðyÞ
� �

: ð8Þ

In Eq. (8), ni is the Cartesian component of the vector nðxÞ or
nðyÞ. The Einstein summation convention is also applied there, so
repeated indices imply summation over their range.

Eq. (6) is referred to as the normal derivative boundary integral
equation (NDBIE) in this paper. Discretization of Eqs. (1) and (6) by
collocation allows us to formulate the system matrices H and G as

Hij ¼ cðxiÞδijþ
Z
Γ
qnðxi; yÞϕjðyÞ dΓðyÞ; ð9Þ

Gij ¼
Z
Γ
pnðxi; yÞϕjðyÞ dΓðyÞ; ð10Þ
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