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a b s t r a c t

The paper describes the application of the Trefftz complete and Kupradze functions in two variational
formulations, i.e. the original formulation and inverse one, to the solution of the boundary value
problems of the two-dimensional Laplace’s equation. In both formulations the solutions and weighting
functions are assumed as the series or the separate function of Trefftz complete functions or Kupradze
ones. One way or another all methods are named Trefftz methods. They all are nonsingular and, at the
same time, they lead to the BEM. The relationship between the groups of Trefftz methods of the original
and inverse formulations is perceived.

Numerical experiments are conducted for several Laplace problems. The accuracy and simplicity of
the methods are discussed. All methods gave comparable results, therefore they may be interchangeably
applied to the solution of boundary problems. However the best method group is pointed out.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Boundary element method (BEM) has certain computational
advantages in a class of linear problems. In particular, it permits a
simple treatment of infinite domains where full field methods
such as finite element method or finite difference method are
difficult to operate [1,2]. Additionally, an economy is that of data
preparation, i.e. it requires a geometrical definition of the bound-
aries only and not of the mesh within.

One considerable disadvantage of the BEM, the conventional
one, in which the singular fundamental solution is used, is the
difficulty encountered in the use of numerical integration over
singularities. This disadvantage can be overcome in many ways; an
original one is proposed in [3]. This paper presents an improve-
ment of the singular boundary method of the Helmholtz equation
boundary problem. In order to eliminate the singularity, it is
introduced the concept of source intensity factors. The concept
proposed to the same order of the singularities of fundamental
solutions of the Laplace equation [4,5] is expanded.

If the solution of the boundary problem is assumed as the series,
the next way is to choose the base functions (bases) so as the solution
satisfies the (homogeneous) governing equations; it leads directly to
BEM. This requirement meets broadly comprehended Trefftz functions

and it immediately generates the Trefftz methods (TMs), originally
formulated in [6]. The unknown coefficients are determined by
matching the boundary conditions. Hereafter, as Trefftz functions (T-
functions) are defined the T-complete functions described in [7,8]. The
mathematical theory of TMs is developed in [7,9–11].

Conventionally, TMs are divided into two main groups, i.e. the
direct formulation and indirect one; see references given in [12].
The former, [12–16], is derived from inverse variational formula-
tion. So, the T-functions are taken as the weighting functions
(weights). Since the weights satisfy the differential equation, one
obtains the boundary integral equation (BIE), from which the
suitable unknown coefficients are obtained.

The latter group, [17–20], is derived from either classical
formulation or original variational one. In this case, the solution
is approximated by the series of the T-functions with unknown
coefficients, which are determined so that the approximate solu-
tion satisfies boundary conditions and it also leads to BIE. Since
both direct and indirect formulations lead to the BIE so TMs are
BEM. As mentioned above, an excellent survey of the BEM is given
in [1,2]. But the survey does not include details and TMs are not
perceived as separate method. The gap is filled by [21,22] where
the survey of TMs is given. Furthermore the comparison among
TMs and other numerical methods is made and the review of
coupling techniques which includes TM and its variants and
versions are run.

The second such method, which leads to BEM, is a method of
fundamental solutions (MFS). The MFS can be reviewed as an
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indirect BEM with concentrated sources instead of distribution.
The initial idea is to approximate the solution with a linear
combination of fundamental solutions with sources located out-
side the domain; such solutions are proposed in [11] and refer-
ences cited therein, so hereafter they are called as K-functions.

The link between TMs and MFS is detailed discussed in [23,24].
They are compared in classical formulation. In [24] one focuses on
providing the equivalence on the numerical Green’s functions for
annular Laplace problem derived by using the TM and the image
method (image method is a special case of MFS). The two solutions
of TMs and MFS were proved to be mathematically equivalent by
using additional theorem or so-called degenerate kernel.

The least square method (LSM) and ultraweak variational
formulation are compared in the TMs in [25], in which the solution
is assumed as the series of the T-functions. In that paper, in the
framework of LSM, the quadratic functional (an energy) is for-
mulated. Minimizing the functional, the constant coefficients are
calculated. This method ought to be included into the energetic
methods rather (variational ones) or into the weak variational
formulation and Galerkin version. Using firstly weighted residual
method, quite the same attitude is applied in the ultraweak
variational formulation.

An expanded survey of some TMs is given in [21,22]. In those
works, the TM, the collocation method, and the collocation TM are
compared. Furthermore, the hybrid methods, which include the
indirect TM, the original one, the penalty plus hybrid TM, and the
direct TM are reviewed for the inter-zonal conditions. Other
boundary methods are also briefly described. Comparisons among
TMs and other numerical methods are made.

None of the above papers contains the cross comparison of the
nonsingular boundary methods basing on the assumed a priori
nonsingular bases; such bases constitute T-functions and K-func-
tions. Sometimes all these methods are named commonly as TMs.

In this work this gap is filled. The nonsingular methods are
derived from the original and the inverse variational formulations;
some results are published in [26,27]. Furthermore, they are in the
form of the series in which the bases are either K-functions or T-
functions. Furthermore the weights take the same forms as the
bases. To sum up, each separate method contains T-functions and
K-functions as the bases or as the weights. This way eight separate
methods are formulated and all lead to the first kind of Fredholm
BIE. It seems that all nonsingular solutions of Laplace’s boundary
problems based on T-functions and K-functions are formulated. In
order to distinguish the detailed differences among them, the
appropriate symbols are introduced.

The methods are first formulated. Since the Laplace’s equation
is the simplest one, thus it is utilized for studying robustness and
efficiency of the derived TMs. Numerical experiments are provided
for three boundary problems with analytical solutions. The results
are depicted in figures and furthermore the method errors, via
Euclidean norm, are quantitatively given. In the end some conclu-
sions are derived.

2. Kinds of boundary problem formulations

A general formulation of boundary problems is the classical
formulation and the variational one.

2.1. Classical formulation of boundary problems

Let in the domain Ω surrounded by the boundary Γ be given
the boundary problem described by a differential equation and the
boundary condition, Fig. 1. The Γ is divided into two main
elements, i.e. Γ ¼ [ jΓj, Γj ¼ Γu or Γv. Let Δ ¼ L be Laplace

operator, hence the boundary problem is as follows

ΔuðxÞ ¼ LuðxÞ ¼ 0; x¼ _xAΩ;

uðxÞ ¼ ûðxÞ; xAΓu

DnuðxÞ ¼ vðxÞ ¼ v̂ðxÞ; xAΓv ð1Þ
where ûðxÞ, v̂ðxÞ are given functions, the rest of symbols is depicted
in Fig. 1.

The problem can be rewritten in a compact form

DuðxÞ ¼ hðxÞ; xAΩ ð2Þ
where D¼ L=B and B is the boundary operator; it represents
Dirichlet or Neumann boundary conditions, hðxÞ ¼ 0 = gðxÞ and
Ω ¼ Ω [ Γ.

The boundary problem, described by Eq. (2), is classically
formulated. Substituting the approximate solution ~uðxÞ , instead
exact one u ðxÞ into Eq. (2), this equation is not satisfied and some
residuum is generated, hence

EΩðxÞ ¼D ~uðxÞ�hðxÞa0; xAΩ ð3Þ
where EΩðxÞ ¼ EΩðxÞ = EΓðxÞ.

This form of the boundary problem is the starting point for the
variational formulations.

2.2. Variational formulations of boundary problems

The transformation of the classical formulation into variational
ones is done via the weighted residual method (WRM) [28–30]. The
first step of WRM is multiplying Eq. (3) by any weight
WΩðxÞ ¼ WΩðxÞ=WΓðxÞ. Hence, the weighted equation is obtained

EΩðxÞWΩðxÞa0; xAΩ ð4Þ
Integrating Eq. (4) over domain Ω gives the weighted integral

equationZ
Ω
EΩðxÞWΩðxÞdxa0; xAΩ ð5Þ

An idea of WRM lies in such distribution of the residuum EΩðxÞ
in domain Ω, via selection of the weight WΩðxÞ, so that the
weighted integral equation should be equal to zero, namelyZ
Ω
EΩðxÞWΩðxÞdx¼ 0; xAΩ ð6Þ

Eq. (6) is the basic one of WRM; sometimes it is called weighted
residual statement. At the same time, it is an original variational
formulation of the boundary problem Eq. (2).

In practice, it is convenient to instill boundary conditions into
variational formulations. To this purpose, one can write Eq. (6) in
explicit form as
Z
Ω
L ~u W dx¼

Z
Ω
Δ ~u W dx¼ 0 ð7Þ

Fig. 1. Geometry of the general boundary problem.
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