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a b s t r a c t

The magnetic field integral equation (MFIE) is widely used in the analysis of electromagnetic scattering
problems for conducting objects. Usually, the MFIE is solved by the method of moments (MoM) using the
Rao–Wilton–Glisson (RWG) basis functions. In this paper, a new kind of basis function which is named
the piece-wise constant vector basis function is proposed and used to solve the MFIE by MoM. Definition
of this kind of basis function is given. The calculation of the impedance matrix entries is presented in
detail. This kind of basis function is then used for the solution of the MFIE for electromagnetic scattering
problems. The radar cross section (RCS) results and the iterative property of both kinds of basis functions
are presented. It is shown that the piece-wise constant vector basis functions give similar RCS results as
those of the RWG basis functions. Particularly, when iterative solver is used to solve the resultant linear
system, the solution scheme using the piece-wise constant vector basis functions iterates much faster
than that using the RWG basis functions.

& 2015 Published by Elsevier Ltd.

1. Introduction

Surface integral equations [1,2] are widely used in modelling
electromagnetic scattering problems associated with perfect con-
ducting objects. In this method, the proper Green’s function are
first achieved and used as the integral kernel. Then we integrate
on the whole surfaces of the corresponding conducting scatterer.
For electromagnetic scattering problems associated with a con-
ducting scatterer in free space, usually, the free space Green’s
function is used as the integral kernel. The equivalent surface
currents are commonly used as the unknown functions. Once the
equivalent surface currents are solved, other interesting character-
istics such as the radar cross section (RCS) can be calculated easily.
If the boundary condition for tangential electric fields are used,
then we get the electric field integral equation (EFIE) [3–5] and if
the boundary condition for tangential magnetic fields are sued,
then we get the magnetic field integral equation (MFIE) [4–6].
Both kinds of integral equations are widely used in modeling the
equivalent surface currents for a conducting scatterer. The EFIE
is a first-kind Fredholm surface integral equation. The condition

number of the corresponding impedance matrix is usually large
and the number of iterations is large when solving the corre-
sponding linear system using iterative algorithm. However, The
MFIE is a second-kind Fredholm surface integral equation and the
number of iterations is usually small when solving the correspond-
ing linear system using iterative algorithm. To solve a surface
integral equation, the method of moments (MoM) [4] are widely
used. To model arbitrarily shaped three-dimensional surfaces,
triangular patches are frequently used to discretize the surface of
a conducting scatterer. Then a suitable basis function sets should
be used to expand the equivalent surface currents. The most
notable basis functions are the Rao–Wilton–Glisson (RWG) basis
functions [3]. However, to improve the accuracy of the MFIE, other
kinds of basis functions defined on triangular patches are also used
recently. In [7,8], the monopolar RWG functions are used for the
MFIE for conducting objects with sharp-edges or corners. The n�
RWG basis functions [9–12] and the linear-linear basis functions
[13] are reported to give better accurate results than those of the
RWG basis functions. Particularly, the Buffa–Christiansen basis
functions used in [14] can improve the accuracy of the second-
kind Fredholm integral equations greatly. The MFIE is a second-
kind Fredholm surface integral equation, and the number of
iterations solving the corresponding linear system is usually
small. However, the choice of the basis functions also affects the
number of iterations. Results reported in the former literatures are
usually involving the accuracy problems. However, they usually

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/enganabound

Engineering Analysis with Boundary Elements

http://dx.doi.org/10.1016/j.enganabound.2015.05.003
0955-7997/& 2015 Published by Elsevier Ltd.

n Corresponding author at: School of Physics Science and Information Technol-
ogy, Liaocheng University, Liaocheng 252059, Shandong Province, China.
Tel.: þ86 635 8231229; fax: þ86 635 8231255.

E-mail addresses: dengali@lcu.edu.cn (A. Deng),
zhangliming@lcu.edu.cn (L. Zhang), wangminghong@lcu.edu.cn (M. Wang).

Engineering Analysis with Boundary Elements 59 (2015) 105–111

www.sciencedirect.com/science/journal/09557997
www.elsevier.com/locate/enganabound
http://dx.doi.org/10.1016/j.enganabound.2015.05.003
http://dx.doi.org/10.1016/j.enganabound.2015.05.003
http://dx.doi.org/10.1016/j.enganabound.2015.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enganabound.2015.05.003&domain=pdf
mailto:dengali@lcu.edu.cn
mailto:zhangliming@lcu.edu.cn
mailto:wangminghong@lcu.edu.cn
http://dx.doi.org/10.1016/j.enganabound.2015.05.003


use similar number of iterations when solving the resultant linear
system using iterative algorithm as that of the RWG basis
functions.

Different from the work in [7–14] to improve the accuracy of
the MFIE using new basis functions, we focus on reducing the
number of iterations for iterative algorithm when solving the
linear systems resulted from the solution of the MFIE. It is shown
that although the MFIE is the second-kind Fredholm surface
integral equation, the number of iterations solving the correspond-
ing linear system can still be reduced greatly through the use of
other basis functions other than the commonly used RWG basis
functions. This is realized through the use of a new kind of basis
functions which is named the piece-wise constant vector basis
functions. Compared with the traditionally used RWG basis func-
tions, the piece-wise constant vector basis functions are orthogo-
nal with each other in the corresponding definition domain.
Definitions of this kind basis functions and the construction
process in acquiring the piece-wise constant vector basis functions
are given in this paper. Besides, we give a detailed discussion on
the solution of the MFIE using this basis functions by MoM.
Numerical results for electromagnetic scattering analysis from
conducting objects with both curved surfaces and with sharp-
edges or corners are shown to show the effectivity and efficiency
of this new kind of basis functions.

2. The MFIE and the EFIE formulation

The electromagnetic scattering problem by a conducting object
is shown in Fig. 1. The time-harmonic electric and magnetic fields
are denoted by EðrÞ and HðrÞ, respectively. According to the
equivalence principle [15], the problem can be formulated in
terms of the equivalent surface electric currents JðrÞ defined on
the boundary surface ∂Ω in Fig. 1. Equations governing the
equivalent surface currents JðrÞ can be formulated by the MFIE
which is obtained from the boundary conditions of the magnetic
fields HðrÞ, i.e.,
nðrÞ �HðrÞ ¼ JðrÞj ∂Ω ð1Þ

where in (1) nðrÞ is the normal unit vector for ∂Ω. The total
magnetic fields HðrÞ can be written as the sum of the incident
magnetic fields HiðrÞ and the scattered magnetic fields HsðrÞ. By
the use of the Stratton–Chu formulation, the scattered magnetic
field in Ωext can be expressed as and integral associated with the
Green’s function in free-space. To express the MFIE compactly, we
use an integral operator K which is defined as

Kðf; ∂ΩÞðrÞ ¼ nðrÞ � p U v U

Z
∂Ω

∇Gðr; r0Þ � fðr0Þdr0 ð2Þ

with p.v.means the Cauchy principal integral and Gðr; r0Þ ¼ e� jk0R=4πR
is the free-space Green’s function. R¼ j r�r0 j is the distance between
the field point r and the source point r0. Then the MFIE can be written
neatly as

ð1=2ÞℐðJÞðrÞ�KðJ; ∂ΩÞðrÞ ¼ nðrÞ �HiðrÞ ð3Þ
In (3), ℐ is the identity operator which maps a vector function

into itself.
Similarly, the equivalent surface currents JðrÞ can also be

formulated by the EFIE which is obtained from the boundary
conditions of the electric fields HðrÞ, i.e.,
½EðrÞ� tan ¼ 0j ∂Ω ð4Þ

By the use of the following integral operator T ,

Tðf; ∂ΩÞðrÞ ¼ � jk0

Z
∂Ω

½fðr0Þþ 1

k20
∇∇U 'fðr0Þ�Gðr; r0Þdr0 ð5Þ

the scattered electric fields EsðrÞ can be expressed as

EsðrÞ ¼ Tðη0J; ∂ΩÞðrÞ ð6Þ
In (5), j is the imaginary unit and the free-space wave number

k0 ¼ω ffiffiffiffiffiffiffiffiffiffiμ0ε0
p

. ω is the radial frequency of operation. In (6), the
free-space wave impedance η0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
μ0=ε0

p
.

Since

EðrÞ ¼ EsðrÞþEiðrÞ ð7Þ
The EFIE can be expressed compactly as

Tðη0J; ∂ΩÞðrÞ ¼ �EiðrÞ
h i���

tan
ð8Þ

Although both the MFIE and the EFIE can be used to solve the
former mentioned electromagnetic scattering problems, numerical
characters of these two equations are quite different. It has been
observed that EFIE has better accuracy than MFIE [16,17]. Many
new kinds of basis functions have been proposed to deal with the
inaccuracy problems of the MFIE. On the other hand, MFIE has
better convergence rate when solved with an iterative solver. This
is because MFIE is a second kind integral equation while EFIE is a
first-kind integral equation. Hence, the eigenvalues of EFIE opera-
tors tends to cluster around the origin while those of the MFIE
operator are shifted away from the origin. However, all of the
published papers focus on improving the accuracy of the MFIE.
None is associated with the iterative character of the MFIE. It is
shown in the following sections of this paper that the iterative
character of the MFIE can further be improved greatly through the
use of new kind of basis functions.

3. Piece-wise constant vector functions and its application in
the MFIE

Characters of integral operator limit the choice of basis func-
tions in method of moments (MoM). For the EFIE, to reduce the
high singularity of the gradient-gradient operation in the integral
operator T , usually, one gradient operator is transferred to diver-
gence operator on basis functions through vector operation [3]. In
this case, basis function has to be the divergence-conforming
functions. This kind of function keeps the continuity of the normal
component for the expanded vector. The commonly used Rao–
Wilton–Glisson (RWG) functions are such kind of divergence-
conforming functions. However, different from the EFIE, there is
no any vector differential operation on the surface currents JðrÞ in
the MFIE. Therefore, the continuity condition for the surface
currents JðrÞ is not so strict as those in the EFIE. In fact, functions
that do not impose any normal or tangential continuous condi-
tions can be used to expand the unknown currents in the MFIE. For
example, the monopolar RWG basis functions used in [7,,8]Fig. 1. Electromagnetic scattering of plane waves by a conducting object.
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