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a b s t r a c t

In this paper, we give an invariant method of fundamental solutions (MFS) for recovering the
temperature and the heat flux. The invariant MFS is to keep a very basic natural property, which is
called the invariance property under trivial coordinate changes in the problem description. The optimal
regularization parameter is chosen by Morozov discrepancy principle. Then the reason for introducing
the regularization is explained clearly by using the potential function. Three kinds of boundary value
problems are investigated to show the effectiveness of this method with some examples. In especial,
when the classical MFS does not give accurate results for some problems, it is shown that the proposed
method is effective and stable. For each example, the numerical convergence, accuracy, and stability
with respect to the number of source points, the distance between the pseudo and real boundary, and
decreasing the amount of noise added into the input data, respectively, are also analyzed.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Let Ω�R2 be a bounded and connected domain with piecewise
smooth boundary ∂Ω, Γ1 be a portion of ∂Ω, and set Γ2 ¼ ∂Ω⧹Γ1. In
this paper, we refer to steady-state heat conduction applications in
an isotropic homogeneous media, and consider the interior pro-
blem for the Laplace equation. Consequently, in the absence of
heat sources, the function uðxÞ denotes the temperature at a point
xAΩ, satisfies the steady-state heat equation

Δu¼ 0 in Ω: ð1Þ
Now let nðxÞ be the unit outward normal vector on ∂Ω, and qðxÞ be
the normal heat flux at a point xA∂Ω defined by

qðxÞ ¼∇u � nðxÞ: ð2Þ
In this paper, we consider (1) combining the following boundary
conditions:

� Dirichlet boundary condition (given the temperature)

uðxÞ ¼ f ðxÞ on ∂Ω: ð3Þ

� Neumann boundary condition (given the normal heat flux)

qðxÞ ¼ ~qðxÞ on ∂Ω: ð4Þ

� Mixed boundary condition (given the partial temperature and
the partial normal heat flux)

uðxÞ ¼ f ðxÞ on Γ1;

qðxÞ ¼ ~qðxÞ on Γ2:

(
ð5Þ

One popular method for solving these problems is the MFS. The
MFS, first introduced by Kupradze and Aleksidze [1], is a well-
known meshless method. It is an effective method to deal with the
direct and inverse problems governed by the partial differential
equations. Its numerical formulation was first given by Mathon
and Johnston [2]. The main idea of the MFS is to approximate the
solution by a linear combination of fundamental solutions with
respect to some source points located outside the solution domain.

This paper is to recover the temperature and the heat flux by an
invariant method of fundamental solutions (IMFS). The main idea
is to approximate the solution by the MFS with invariant condi-
tion, which is a solution of the Laplace equation (1) of the form

uðxÞ ¼ cþ
XN
j ¼ 1

ajΦðx; yjÞ;
XN
j ¼ 1

aj ¼ 0; ð6Þ

where yjAR2⧹Ω, c is a constant, and aj are the coefficients. Here,
Φðx; yÞ ¼ ð1=2πÞlnjx�yj is the fundamental solution.

The MFS, also named the charge simulation method, is a
meshless method. It is extremely attractive to solve the problems
with complicated boundary. The method has become increasingly
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popular because of the simple implementation, especially for the
problems in complex geometries. The simple implementation of
the MFS for the problems with complex boundaries makes it an
ideal candidate for the problems in which the boundary is of major
importance or requires special attention. For these reasons, the
MFS has been used increasingly over the last decade for the
numerical solution of various problems, including the inverse
problems [3] and the direct problems [4,5]. Fairweather and
Karageorghis [3] and Karageorghis et al. [6] presented the excel-
lent surveys of the MFS and related methods over the past three
decades. As marked in [3], the MFS was used to solve a variety of
more complicated problems such as plane potential problems
involving nonlinear radiation-type boundary conditions, free
boundary problems, biharmonic problems, elastostatics problems
and wave scattering problems. The MFS is also used to solve the
unsteady state heat equation, see [7] for details.

Although the MFS has been used to deal with the numerical
solutions of various problems, it should be noted that it is possible
to obtain an inaccurate solution for using the classical MFS. As
marked by Chen et al. [8], many researchers proposed to enrich
their formulations. Alves and Leitao [9] introduced an enriched
MFS to simulate a crack singularity. Saavedra and Power [10,11]
added a constant term in their formula, and marked that this is for
the completeness purposes in two-dimensions. Although the
constant in the MFS is sometimes recommended, it is rarely used
in practice as the degenerate cases occurring rather rarely. In the
literatures, the inclusion of the constant has been discussed by
several researchers [12–15]. In order to avoid the trouble of
choosing a fictitious boundary, Chen et al. [16] developed the
singular boundary method (SBM). They assumed a test example to
calculate the source weighting, and then used this source weight-
ing to determine the value of diagonal term where the source and
field points can coincide. However, for certain case, the SBM yields
an inaccurate approximation. As a result, they provided an
improved formulation of adding a constant term and a constraint
[17,18]. They called this constraint “moment condition”. However,
the role of the constant and the constraint were not discussed in
detail. Although they [16–20] have successfully solved the pro-
blems, they did not deeply examine the role of the constant term
and the constraint. Following Fichera's idea, Chen et al. [8]
enriched the MFS, formulation the MFS by an added constant
and a constraint, which can be used to solve not only the interior
problem, but also the exterior case. They also explained that the
constant term and the constraint were required to ensure a unique
solution for the degenerate scale. Besides, the role in exterior
problems is also examined. But they do not investigated the
corresponding enriched MFS for the Neumann boundary condition
and the mixed boundary condition. The numerical study of this
method to solve these three problems is our main goal. In a recent
paper by Chen et al. [21], they added a free constant and an extra
constraint to enrich the indirect boundary element method
formulation to overcome the incompleteness of the indirect
boundary element method for the interior problem containing a
degenerate scale and for the exterior problem with a bounded
potential at infinity in their paper. The enriched indirect boundary
element method can be used not only for the interior 2D problem
in the case of a degenerate scale but also the exterior problemwith
a bounded potential at infinity. Furthermore, the constant term is
added to compensate for the range deficiency by a constant field in
case of a degenerate scale. For a degenerate scale, we can refer to
[22–26]. In [27], Sun and Ma have given a new view of this
equation and derived it by using the invariance argument. The
authors prove that the invariance property is the essence of the
analytical solution. It should be noted that the degenerate scale
and the invariance property both will give the free constant and an
extra constraint for the MFS. A clear linking on connections of the

MFS, Trefftz method, indirect boundary integral equation method
and invariant MFS was established by Chen et. al [28].

The outline of this paper is as follows. In Section 2, we firstly
formulate the IMFS, then give an invariant MFS to solve the heat
conduction problem. In Section 3, we will explain the necessary of
the regularization for solving this boundary value problem. Finally,
five numerical examples are included to show the effectiveness of
the method for solving three kinds of boundary value problems.
The first one is a comparative study between the classical MFS and
the IMFS. The second one is a problem with Dirichlet boundary
condition on a simply connected domain. The third one is a
problem with mixed boundary condition on a doubly connect
domain. The forth one is a problem with Neumann boundary
condition on a non-convex peanut domain. The last one is a
problem with mixed boundary condition on a square domain.

2. Formulation of the IMFS

Let us consider the following two simple problems: let D1 and
D2 be two simply connected domains with smooth boundaries. For
every xA∂D1, there is x0 ¼ λxA∂D2; λ40. Let u and u0 satisfy

� (P.1)

Δu¼ 0 in D1;

u¼ f on ∂D1:

(

� (P.2)

Δu0 ¼ 0 in D2;

u0 ¼ f 0 on ∂D2:

(

If we give the boundary conditions f ðxÞ ¼ f 0ðλxÞ for xA∂D1, we
know that the two solutions have some relevance, i.e., uðxÞ ¼ u0ðλxÞ
for xAD1. We call that the invariance property under trivial
coordinate changes in the problem description as scaling of
coordinates.

The classical MFS assumes an approximation of u by the
following form

uCðxÞ ¼
XN
j ¼ 1

ajΦðx; yjÞ; ð7Þ

where yjAR2⧹Ω are the source points, aj are the coefficients
which will be determined from the boundary condition.

However, the approximation uCðxÞ constructed in this way lacks
an essential property [27], i.e. the invariance under trivial coordi-
nate changes in the problem description such as scaling of
coordinates:

x-λx; yj-λyj: ð8Þ

To be more specific, we expect that the approximation uCðxÞ of uðxÞ
should transform as

uCðxÞ-u0
CðλxÞ ð9Þ

under the transformations (8). Thus we can simultaneously get the
solutions of (P.1) and (P.2). However, uCðxÞ is not the case. Since

u0
CðλxÞ ¼

XM
j ¼ 1

ajΦðλx; λyjÞ ¼
XM
j ¼ 1

ajlnj λx�λyj j

¼
XM
j ¼ 1

ajlnj λx�λyj j ¼ uCðxÞþ
XM
j ¼ 1

ajlnλ; ð10Þ

and in general,
PM

j ¼ 1 aja0. Thus, u0
CðλxÞauCðxÞ.
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