Engineering Analysis with Boundary Elements 59 (2015) 129-143

Engineering Analysis with Boundary Elements

journal homepage: www.elsevier.com/locate/enganabound

Contents lists available at ScienceDirect

MPM simulations of high-speed and ultra high-speed machining

@ CrossMark

of titanium alloy (Ti—-6AI-4V) based on fracture energy approach

X.Y. Gu®, C.Y. Dong **, J.L. Li™¢, Z.Y. Liu?, J.Y. Xu?

@ School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
b School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an, China
€ School of Civil Engineering, Henan University of Urban Construction, Henan, China

ARTICLE INFO

ABSTRACT

Article history:

Received 25 October 2014
Received in revised form

13 May 2015

Accepted 28 May 2015
Available online 26 June 2015

Keywords:

Material point method

Hillerborg's fracture energy criterion
Chip morphology

Based on material point method (MPM), two dimensional (2D) orthogonal chip model on titanium alloy
is established. Unlike finite element method (FEM) with seriously distorted meshes during the
simulation of large strains such as the formation of shear band, the MPM is especially suitable for the
numerical simulation of large deformation and high strain rate of metal material at high temperature.
The generalized interpolation material point (GIMP) contact algorithm, Johnson-Cook model and
Hillerborg's fracture energy criterion are used to simulate the cutting process on Ti-6Al-4V alloy. The
parameters option and simulation process are first discussed, then the corresponding chip force and
temperature field etc. are analyzed and compared with experimental data available. A good agreement
has been found between them. Finally, the evolution of the temperature and cutting force are studied,
and the effects of cutting speed and cutting feed rate on the chip morphology and cutting force are also
investigated. It was the first time to simulate the serrated and discontinuous chips with the MPM and
obtain relatively satisfactory results. The transition from serrated to discontinuous chips has been well

captured in this paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

High-speed machining is an advanced manufacturing technology
with high efficiency, high quality and low consumption, and has been
considered as the development direction of machining technology.
Comparing with the traditional cutting process, high speed cutting
leads to the cutting force to be decreased by 30-90%, and more
cutting heat to be carried off by the chip. It can significantly improve
the tool life and avoid the large thermal deformation of workpiece.
Therefore, the machining precision and surface quality of workpiece
[1] can be greatly improved. But the process of high speed machining
often causes the periodic vibration, which can affect the service life of
the cutting tool and the accuracy of the machined surface. At present,
the mechanism of the serrated chip formation has not yet been well
understood. Currently, two theories, i.e. the adiabatic shear theory
and the periodic brittle fracture theory [1] have been used in the field
of the high speed machining. Burns et al. [2,3] proposed a one-
dimensional model of a simple isotropic material and revealed the
serrated chip process of thermal-mechanical mechanism. Feng and
Meng [4] calculated the critical velocity of titanium alloy material of
saw-tooth chip by using elastoplastic theory and numerical methods.
Mabrouki [5] investigated the thermo-mechanical effect on the chip
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morphology by using ABAQUS/Explicit software. Based on the
fracture mechanism, Mabrouki et al. [6] and Zhang et al. [7]
simulated the serrated chip, and analyzed the distribution of the
chip damage factor. Ng and Aspinwall [8] and Ng et al. [9] established
two-dimensional and three-dimensional models, respectively. For
two kinds of different materials, their work showed that when
fracture criterion is not considered, chip morphology is continuous.
However, the chip becomes a discontinuous formation and the crack
will be found at the shear band when the fracture criterion is used.
Therefore, the discontinuous chip formation can be attributed to the
periodic fracture theory. Although many studies about metal cutting
have been done using the finite element method (FEM) [10-13],
most of them did not carry out comparison with the experimental
results [10,11,13]. Compared with the FEM, the meshless method has
more advantages in dealing with the impact and penetration
problems, and has achieved successful application [14-17] in recent
years. The MPM uses particles to dissociate the objects. Therefore, it
actually belongs to the particle type meshless method. The advantage
of the MPM is that it is easy to describe the object with large
deformation or break such as high speed cutting process [17]. In
numerical implementation of the MPM, it only uses regular back-
ground grid to compute the momentum equations. As a result, it is
not restricted to mesh distortion. The aim of this work is to develop
the 2D MPM for investigating the high speed to ultra high speed
cutting process on Ti-6Al-4V alloy. To this end, the Fortran
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computing code using the 2D MPM has been written. Numerical
examples are presented to verify the present method by means of
comparison with the experimental results available.

This paper is organized as follows. The review of the formula-
tions of the MPM is given in Section 2. The description of classical
Johnson-Cook constitutive model without damage is presented in
Section 3. The introduction of the energy-based fracture criterion
developed from the JC constitutive model is shown in Section 4. The
cutting process simulations and discussion appear in Section 5.
Finally, the conclusion is obtained in Section 6.

2. Basic formulations

The MPM belongs to the particle type meshless method since it
uses a set of discrete particles to represent the continuum. Particle
movement represents the movement and deformation of the
continuum body. By using updated Lagrangian scheme, it is easier
for the MPM to describe dynamic problems involving large
material deformation [18].

2.1. The basic formulations of the MPM

Based on continuum mechanics, the following governing Eqs.
(1)-(3) must be satisfied in the updated Lagrangian deformation
and movement. In addition, the tensor is adopted here to facilitate
description of the problem, the Cauchy stress ¢ and deformation
rate tensor D are used to describe the stress and strain rate,

Conservation of mass : Z’?—i-pv v=0 1

Momentum equation: pa=V-6+pb 2)
. de

Energy equation : pa =6:D 3)

where p(x,t) is the density of the material; V represents the
Hamilton operator; v(x,t) and a(x,t) respectively denote the
velocity vector and the acceleration vector; o(x,t) and D(X,t)
respectively express the Cauchy stress tensor and the deformation
rate tensor; b(x, t) indicates the body force vector; e(x, t) shows the
internal energy of unit mass; x means the particle position vector
at time ¢t.

In the MPM, continuum is dispersed into a series of particles, as
shown in Fig. 1. The particle carries density, velocity, stress and
other physical quantities. In the domain, it is very difficult to
directly solve the momentum Eq. (2) of the differential form.
Therefore, the numerical simulation is often based on the weak
form of the differential equation in a general way, i.e. virtual work
equation. Here 2 represents the spatial domain occupied by an
object at time t. I" represents the surface of an object, and it
consists of two parts /'y and /', in which 7', is the displacement
boundary and 7 is the stress boundary. As a virtual displacement
vector, w satisfies the displacement boundary conditions. Then,
the virtual work equation is as follows:

/pa~wd.(2+/G:deQ:/pb-wd.Q+/f~wdF )
Q Q Q I
where =6 - n in which n is the unit normal vector to [.

In the MPM, the subscript i expresses the node variable, the
subscript p denotes particle variables. With the discrete particle,
the density of the object can be approximately expressed at time t
as

p= Zmpé(x Xp) (5)

p=1

where m, expresses the mass of the particle p, X, means spatial

Fig. 1. Material point method diagram: continuous thick line - body boundary;
dash line - background grid; bold dot -- material point.

situation at time ¢, Ny, indicates the number of all the particles. Eq.
(5) can be inserted directly into Eq. (4) to give

Np
> mpax,, t) - wx,, 0+ Z ( 6(xp,t) VW(x_x,
p=1
Np
=Y mpb(xp,t)~w(xp,t)+/Ff-wdr (6)
p=1 ¢

When solving the momentum equation, material points move
with background grid. So the mapping relation between particle
and background grid nodes can be established through the finite
element shape function. If we use the regular background grid of
the same square cells, a cell with four nodes will be established.
The shape functions are given by

1
Ni(&,m = a1 +&EEN(A +nmy) (7)

where &, 57 are the coordinate values for the particle under local
coordinate system, and &;,#; are 1 or —1 according to the different
node values.

If S, expresses the value of shape function of node i at particle
p, and G, denotes the gradient vector of shape function of node i
at particle p, considering the arbitrary displacement, the momen-
tum equation at node i is

Ny i
Z mga; = fl-EX[ +f}m 8)
j=1

In Eq. (8), my; is the component of mass matrix, fe’“ denotes the

external force vector of node i, f”” represents the internal force
vector of node i, these equations are given by

Ny
M= SipSipMyp )
£ = Z mpSiyby + / NitdI" (10)
. NP m
f'=->" —T6, G, a1
p=1 pP

If the lumped mass matrix is adopted, the momentum equation
of the node can be written as

m;a; = fieXt—I—f::nt (12)

where m; is the mass of the node i.
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