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Summary: Objective. The present study aims to compare the correlation dimension and second-order entropy at
the minimum embedding dimension with the correlation dimension (D2) and second-order entropy (K2) based on their
efficiency and accuracy in differentiating between normal and pathologic voices.
Methods. The minimum embedding dimension was estimated with the Cao method. Nonlinear dynamic param-
eters, such as correlation dimension and second-order entropy, were used to quantitatively analyze the normal and pathologic
voice samples.
Results. The computing time of the correlation dimension and second-order entropy at the minimum embedding di-
mension was reduced to approximately one third of that of traditional D2 and K2 calculations, reflecting higher efficiency.
The statistical results of linear fitting suggested that the correlation dimension was highly correlated to the correlation
dimension at the minimum embedding dimension, and second-order entropy calculation was highly correlated to the
second-order entropy at the minimum embedding dimension. Lastly, the results of statistical comparison proved that
the correlation dimension at the minimum embedding dimension and second-order entropy at the minimum embed-
ding dimension were able to significantly differentiate between normal and disordered voices (P < 0.001).
Conclusions. The results suggest that the correlation dimension and second-order entropy at the minimum embed-
ding dimension are valid analysis tools for the diagnosis of voice disorders. Additionally, the efficiency and accuracy
of these parameters yield potential for clinical usage because of lower computation time than current methods.
Key Words: Minimum embedding dimension–Laryngeal paralysis–Nonlinear dynamic analysis–Correlation
dimension–Kolmogorov entropy.

INTRODUCTION

Nonlinear dynamic analysis methods have been proven useful
in the study of laryngeal systems.1–10 Behrman and Baken first
investigated the effects of nonstationarity, noise, and finite signal
length on the calculation of correlation dimension of
electroglottographic signals from normal and pathologic voices.1

Next, Hertrich et al indicated that there was a significant dif-
ference between the fractal dimensions of the electroglottographic
signals of subjects with Parkinson’s disease and those of normal
individuals.2 To add to this research, Giovanni et al found that
pathologic voices from patients with unilateral laryngeal paral-
ysis had significantly higher maximal Lyapunov exponents than
normal voices.3 Recently, Zhang et al revealed that both corre-
lation dimension and second-order entropy of pathologic human
voices showed a statistically dramatic reduction after surgical
excision of vocal polyps, suggesting functional improvements.4

The combination of these results demonstrates that nonlinear
dynamic analysis methods are effective in statistically analyz-
ing pathologic voices. Although nonlinear dynamic analysis

methods have an extremely large potential for clinical applica-
tion by accurately diagnosing laryngeal pathologies,3,8,11,12 and
evaluating therapeutic effects,4,11 they are time consuming in prac-
tical applications, especially in cases dealing with large volumes
of data. Hence, improving the efficiency of nonlinear dynamic
analysis for clinical applications is a crucial issue.

Inspired by the Cao method for its high efficiency in deter-
mining the minimum embedding dimension, we investigated the
efficacy of correlation dimension and second-order entropy at
the minimum embedding dimension calculation in our study.
Unlike traditional correlation dimension and second-order entropy
calculations, the correlation dimension and second-order entropy
at the minimum embedding dimension are not estimated with
the increase of embedding dimension d, but estimated merely
at the minimum embedding dimension in the scaling region of
the radius r, leaving out data of other embedding dimensions.
Thus, the calculations of correlation dimension and second-
order entropy at the minimum embedding dimension require less
input data, reducing computation cost and increasing the speed
of the calculation. If these calculations are proven equally as ef-
fective as traditional nonlinear analysis methods, they offer a clear
advantage.

The purpose of the present study is to make statistical com-
parisons between the correlation dimension and the correlation
dimension at the minimum embedding dimension, denoted as
D2,dmin in terms of efficiency and accuracy. The same compari-
sons will be used between the second-order entropy and second-
order entropy at the minimum embedding dimension, denoted
as K2,dmin. First, computing time of D2,dmin and K2,dmin and of D2

and K2 will be compared. Next, we will assess the abilities of
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D2,dmin and K2,dmin to differentiate between normal and patholog-
ic vocal functions. We hypothesize that D2,dmin and K2,dmin will
distinguish between normal and pathologic voices as effective-
ly as traditional calculations of D2 and K2, while requiring less
computation time.

METHODS

Subject selection and initial analysis

Sustained vowel recordings from 44 normal subjects and 21 pa-
tients with laryngeal paralysis were selected from the Disordered
Voice Database and program model 4337, version 1.03 (Kay
Elemetrics Corporation, Lincoln Park, NJ), which is devel-
oped by the Massachusetts Eye and Ear Infirmary Voice and
Speech Lab.13

Next, the signals were analyzed using the minimum embed-
ding dimension calculations derived from the Cao method. Then,
the nonlinear dynamic methods of D2 and D2,dmin, and K2 and K2,dmin

were calculated. Lastly, a Logistic map, Hénon map, and Lorenz
map were created to compare D2 and D2,dmin, and K2 and K2,dmin.

Nonlinear dynamic analyses of acoustical time

series

The dynamics of each voice were reconstructed in a phase
space and then used to calculate correlation dimension and
second-order entropy. For a time series x t t ti i( )∈ =R, 0

i t i N+ =( ), , ,1 2Δ … , sampled at the time interval Δt fs=1
( fs is the sampling rate), a phase space can be reconstructed
with a time delay vector,

y d x x xi i i i d( ) = ( )+ + −( ), , ,τ τ… 1 (1)

i N d= − −( )1 2 1, , ,… τ , where τ is the time delay and d is
the embedding dimension.14 In this paper, an appropriate τ was
estimated by using the mutual information method proposed by
Fraser and Swinney to find the optimum time lag between
coordinates.

Minimum embedding dimension
The minimum embedding dimension of each sample is deter-
mined as:15
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xl j− + τ ; y di +( )1 is the ith reconstructed vector with embed-
ding dimension d + 1, n i d n i d N d, ,( ) ≤ ( )≤ −( )1 τ is an integer
such that y dn i d,( )( ) is the nearest neighbor of y di( ) in the
d-dimensional reconstructed phase space in the sense of dis-
tance ⋅ defined above. If two points that stay close in the
d-dimensional reconstructed space are still close in the (d + 1)-
dimensional reconstructed space, such a pair of points is called
true neighbors. Otherwise, they are called false neighbors.
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all a i d,( )′s and dependent only on the dimension d and the lag
τ. It has been found that E d1( ) stops changing when d is
greater than some value d0 if the time series comes from an
attractor. Then d0 1+ is the minimum embedding dimension.

Furthermore, Cao defined another quantity E d2( ), which is
useful to distinguish deterministic signals from stochastic signals.
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future values are independent of the past values, E d2( ) will be
equal to 1 for any d for random data. On the contrary, for de-
terministic data, E d2( ) is certainly related to d. As a result, it
cannot be a constant for all d. In other words, there must exist
some d’s under which E d2 1( ) ≠ .

Correlation dimension D2

The correlation dimension D2 is a quantitative measure that speci-
fies the number of degrees of freedom needed to describe a
dynamic system. The correlation dimension can be calculated
as:4,16,17
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where r is the radius around y di( ), and the correlation integral
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where the Heaviside function θ x( ) satisfies:
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With the correlation dimension method, chaos could be dis-
tinguished from white noise through chaos’s different dynamic
characteristics. The estimated D2 of white noise does not con-
verge with the increase of embedding dimension d. However,
the estimated D2 of a chaotic system converges to finite value
with the increase of d. In addition, a more complex system has
a higher dimension, meaning that more degrees of freedom may
be needed to describe its dynamic state.

The correlation dimension at minimum embedding dimen-
sion can be calculated as:

D D ddmin d dmin2 2, .= ( ) = (8)

Kolmogorov entropy K2

Kolmogorov entropy K2 reveals a loss ratio of information in a
dynamic system,4,16,17 which is also a useful measure to discrim-
inate chaos from stochastic noise. For a regular system and a
fixed point, K2 = 0; for a stochastic system, K2 approaches in-
finity; and for a chaotic system, K2 is a positive constant. That
is, the larger Kolmogorov entropy is, the more information is
lost and the more complex a system is.
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