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a b s t r a c t

The objective of this work is to provide theoretical materials for modelling two-dimensional fluid flow
through an anisotropic porous medium containing intersecting curved fractures. These theoretical
developments are suitable for numerical simulations using boundary element method and thus present
a great advantage in mesh generation term comparing to finite volume discretization approaches when
dealing with high fracture density and infinite configuration. The flow is modelled by Darcy’s law in
matrix and Poiseuille’s law in fractures. The mass conservation equations, at a point on the fracture and
an intersection point between fractures in the presence of a source or a sink, are derived explicitly. A
single boundary integral equation is developed to describe the fluid flow through both porous media and
fractures, i.e. the whole domain, which includes particularly the mass balance condition at intersection
between fractures. Numerical simulations are performed to show the efficiency of this proposed
theoretical formulation for high crack density.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Modelling of fluid flow within porous geological formations
containing a high fracture density is a subject of interest, as well as
one of the most challenging problems for many application fields
such as petroleum engineering, groundwater hydrology, geother-
mal energy, etc. To deal with real complex problems and to obtain
local flow information, the numerical methods impose naturally.
The domain discretization methods, such as finite element method
(FEM) [1,2], finite volume method (FVM) [3,4], raise a major
difficulty to generate an appropriate mesh for a domain containing
numerous randomly distributed fractures. The methods, based on
boundary integral equations (BEM), are computationally efficient
and accurate for modelling the fluid flow in porous media thank to
its advantage of reduction of problem dimension [5,6]. However,
the classical BEM exhibits mathematical degeneracy for domain
containing discontinuities. Alternative techniques are proposed for
overcoming this difficulty such as Accelerated Perturbation BEM
[7], Multi-domain Dual Reciprocity Method [8,9], Green element
method [10,11], and Multi-region BEM [25–27]. However, these
advanced techniques require a complicated numerical implemen-
tation in comparison with the standard BEM and also become
inefficient for high fracture density.

Numerical developments, based on the symmetric Galerkin
boundary element method, are presented by Rungamornrat and
Wheeler [12] and Rungamornrat [13] for a full consideration of
fluid flow through heterogeneous and anisotropic porous media
containing non-conductive surface of discontinuity. The nonho-
mogeneous media consist of several subdomains with different
properties. In those works, weak singular weak-form equations are
established for pressure and its derivatives, i.e. flux flow. These
interesting works are thus ready for application fields of fluid flow
within porous media containing fractures or faults that act as
barriers to flow.

As a matter of fact, a fracture is generally much more conductive
than the surrounding matrix, i.e. fluid flow presents both in the
porous matrix and the fractures system. A system of boundary
integral equations for flow in fractured porous media was first
introduced by Rasmussen et al. [14], inwhich the matrix and fractures
are treated as separate systems having a common interface made up
of the fracture boundaries that are contained in the matrix. Therefore,
this system is constituted by four equations: two boundary integral
equations for the matrix and the fractures, and two conditions for
pressure and velocity at fracture–matrix interfaces. Numerical com-
putation requires a fine mesh to calculate accurately the difference
between the unknowns at the collocation points on the two sides of
the fractures. This difficulty is partially overcome in Lough et al. [15]
by modelling the fractures as planar sources within the matrix.
Nevertheless, this new model also consists in coupling two integral
equations between matrix and fractures with the added unknowns of
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source strength on the planar fractures. This numerical procedure is
used by Teimoori et al. [16,17] to simulate the naturally fractured
reservoir. The integral equation has been also used to study the heat
extraction by circulating water in a fracture embedded geothermal
reservoir [18]. This approach allows eliminating the discretization of
reservoir and takes into account multi-dimensional effects compared
to theoretical solutions. The complicated numerical implementation
of this method does not show the advantage of BEM over the FEM
and FVM. This could be a reason why BEM community is less active
than FEM and FVM one when dealing with fluid flow through porous
media in the presence of high crack density.

The present work aims to develope a single boundary integral
equation (BIE) in order to describe fluid flow through two-
dimensional fractured porous media that allows dealing with high
crack density. As a matter of fact, the fractures distributed within
the porous media are obviously three-dimensional configuration.
However, three-dimensional problems could be simplified to two-
dimensional ones in several applications such as Excavation
Damaged Zone around a tunnel or a borehole [19], fault zone
[20], etc. In the two-dimensional consideration, we make an
assumption that fracture has zero thickness and an infinitely
transversal permeability, i.e. there is no pressure jump across the
fracture. The discontinuity of fluid flow across the fracture is
related to fluid flow within the fracture by the mass balance
equation at a point on the fracture. Mass exchanges between
fractures and porous matrix, at intersection between fractures, in
the presence of source and sink points, are explicitly formulated
based on the recent works [21–24]. Considering the fractures as
the internal boundary, the BIE is written for fluid flow within the
porous matrix. This equation links to fluid flow by means of
fracture by the boundary condition on the internal boundary, i.e.
the pressure and flow at the fracture–matrix interfaces. The mass
exchange between matrix and fracture, as well as the fluid flow
constitutive law within the fracture result in a single BIE that
describes fluid flow within whole fractured porous media. This BIE
presents the pressure field as a function of the pressure and the
flow on boundary of domain and the pressure on the fracture
system. It is worth recalling that the condition at the intersection
between fractures, in numerical simulation by whatever methods,
has been ignored in the literature by the lack of an explicit mass
conservation at this point. The development procedure of BIE
allows integrating this mass conservation at intersection points
between fractures. This cancel the singularity at these points.

A single BIE, developed to describe fluid flow within both the
fractures and embedding porous matrix, presents a great advan-
tage in numerical implementation in comparison to a system of
four equations [14–17]. A quick numerical resolution based on
collocation method is performed in order to validate and show the
efficiency of the proposed BIE.

2. Governing equations

Considering a homogeneous medium Ω embedding a set of n
interconnected fractures Γ ¼ [ Γi (i¼1,n) (Fig. 1). In mathematical
model, the fracture, supposed to have zero-thickness, is modelled by a
smooth function zi(s) of the curvilinear abscise s. This function
represents the positions of fracture i within the domain. The porous
matrix corresponds to Ω�Г. There are m sources or sinks located at
points of coordinates xk (k¼1,m) within Ω with corresponding
intensities qk. These sources or sinks can be allocated within the
porous matrix (mp points), on fractures (mf points) or at fractures
intersection points (ms points), thus m¼mpþmfþms. S denotes the
set of intersection points between fractures, fracture endpoints and
source or sink points on fractures.

Fluid flow is governed by Darcy’s law (1) in the matrix and
Poiseuille’s law (2) in the fractures:

8xAΩ�Γ; vðxÞ ¼ �kðxÞ
μ

∇pðxÞ ð1Þ

8sAΓ; qðsÞ ¼ �cðsÞ∂sp ð2Þ

where v(x), p(x) are the fluid velocity and pressure fields within
the porous matrix, respectively; k(x) the matrix’s intrinsic perme-
ability tensor; q the fluid flow in the fracture and c the fracture
conductivity.

The fracture conductivity is determined commonly by cubical
law as c¼e3/(12fμ), in which e is the fracture aperture, μ the
dynamic viscosity of fluid and f the roughness factor of fracture
surfaces [28]. From geometrical point of view, the fracture has zero
thickness to be modelled as a one dimensional curve within two
dimensional spaces. However, in the physical model, there exists
an aperture of facture, i.e. the fracture conductivity according to
Poiseuille’s law (2).

The continuity equation of fluid in the porous matrix reads:

8xAΩ�Γ; ∇:vðxÞþ
Xmp

k ¼ 1

qkδðx�xkÞ ¼ 0 ð3Þ

where δ represents the Dirac distribution.
The mass conservation for flow within the fracture, excluding

the fractures intersection points and source or sink points, is
written as [3,4,21,24]

8sAΓ�S; ½½vðzÞ��UnðsÞþ∂sq¼ 0 ð4Þ

where z is the point on the factures at abscise s, n(s) the normal
unit vector to the fracture oriented from Γ� to Γþ and
½½vðzÞ�� ¼ vþ ðzÞ�v� ðzÞ is the velocity jump across the fractures.

For the mass balance condition at the intersection point having
no source or sink, Pouya and Vu [21] showed that the sum of
outgoing fluid flow vanishes, i.e.

P
iq

0
i ¼ 0, where q0i is the outflow

in the fracture branch i from the intersection point. Their demon-
stration method is used to derive the mass conservation expres-
sions within the fractures or at fracture intersection points
including sources or sinks. Considering a small domain D sur-
rounding a fracture intersection point z where there is the
presence of a source with intensity qs(z). There are I�1 fractures
come together at this point. Let us now replace the source by a
fictitious fracture ΓI meeting with other fractures at z. The flow
within ΓI is constant and equal to qs¼qI (Fig. 2a), i.e. there is no
exchange between the fictitious fracture and the porous matrix.

Fig. 1. Fluid flow within fractured porous media.
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